The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kurysheva N.I.

Medical Biological University of Innovations and Continuing Education of the Federal Biophysical Center named after A.I. Burnazyan;
Ophthalmological Center of the Federal Medical-Biological Agency at the Federal Biophysical Center named after A.I. Burnazyan

Rodionova O.Ye.

N.N. Semenov Federal Research Center for Chemical Physics

Pomerantsev A.L.

N.N. Semenov Federal Research Center for Chemical Physics

Sharova G.A.

Medical Biological University of Innovations and Continuing Education of the Federal Biophysical Center named after A.I. Burnazyan;
OOO Glaznaya Klinika Doktora Belikovoy

Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis

Authors:

Kurysheva N.I., Rodionova O.Ye., Pomerantsev A.L., Sharova G.A.

More about the authors

Journal: Russian Annals of Ophthalmology. 2024;140(3): 82‑87

Read: 2071 times


To cite this article:

Kurysheva NI, Rodionova OYe, Pomerantsev AL, Sharova GA. Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis. Russian Annals of Ophthalmology. 2024;140(3):82‑87. (In Russ.)
https://doi.org/10.17116/oftalma202414003182

Recommended articles:
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Non-invasive auto­mated methods for the diagnosis of periorbital skin tumors. Russian Annals of Ophthalmology. 2024;(5):137-145
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36

References:

  1. Azoulay-Sebban L, Zhao Z, Zenouda A, et al. Correlations Between Subjective Evaluation of Quality of Life, Visual Field Loss, and Performance in Simulated Activities of Daily Living in Glaucoma Patients. J Glaucoma. 2020;29(10):970-974.  https://doi.org/10.1097/IJG.0000000000001597
  2. Kurysheva NI, Sharova GA. The Role of Optical Coherence Tomography in the Diagnosis of Angle Closed Diseases of the Anterior Chamber. Part 1: Visualization of the Anterior Segment of the Eye. Ophthalmology in Russia = Oftal’mologiya. 2021;18(2):208-215. (In Russ.). https://doi.org/10.18008/1816-5095-2021-2-208-215
  3. Kurysheva NI, Sharova GA. The Role of Optical Coherence Tomography in the Diagnosis of Angle Closed Diseases of the Anterior Chamber. Part 2: Visualization of the Posterior Segment of the Eye. Ophthalmology in Russia = Oftal’mologiya. 2021;18(3):381-388. (In Russ.). https://doi.org/10.18008/1816-5095-2021-3-381-388
  4. Soh Z, Yu M, Betzler BK, et al. The Global Extent of Undetected Glaucoma in Adults: A Systematic Review and Meta-analysis. Ophthalmology. 2021; 128(10):1393-1404. https://doi.org/10.1016/j.ophtha.2021.04.009
  5. Doozandeh A, Yazdani S, Pakravan M, et al. Risk of Missed Diagnosis of Primary Open-Angle Glaucoma by Eye Care Providers. J Curr Ophthalmol. 2023;34(4):404-408.  https://doi.org/10.4103/joco.joco_296_22
  6. Liu H, Li R, Zhang Y, et al. Economic evaluation of combined population-based screening for multiple blindness-causing eye diseases in China: a cost-effectiveness analysis. Lancet Glob Health. 2023;11(3):e456-e465. https://doi.org/10.1016/S2214-109X(22)00554-X
  7. Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53.  https://doi.org/10.1186/s40537-021-00444-8
  8. US Preventive Services Task Force, Mangione CM, Barry MJ, et al. Screening for Primary Open-Angle Glaucoma: US Preventive Services Task Force Recommendation Statement. JAMA. 2022;327(20):1992-1997. https://doi.org/10.1001/jama.2022.7013
  9. Fan R, Bowd C, Christopher M, et al. Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning. JAMA Ophthalmol. 2022;140(4): 383-391.  https://doi.org/10.1001/jamaophthalmol.2022.0244
  10. Ko YC, Wey SY, Chen WT, et al. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model. PLoS One. 2020;15(5):e0233079. https://doi.org/10.1371/journal.pone.0233079
  11. Movsisyan AB, Kuroyedov AV, Gorodnichy VV, et al. Evaluation of the efficacy of neural network technology in the analysis of the condition of the optic nerve disc and peripapillary retina in healthy individuals examined for glaucoma. Pacific Medical Journal = Tikhookeanskiy meditsinskiy zhurnal. 2020;(3):43-47. (In Russ.). https://doi.org/10.34215/1609‐1175‐2020‐3‐43‐4
  12. Atalay E, Özalp O, Devecioğlu ÖC, Erdoğan H, İnce T, Yıldırım N. Investigation of the Role of Convolutional Neural Network Architectures in the Diagnosis of Glaucoma using Color Fundus Photography. Turk J Ophthalmol. 2022;52(3):193-200.  https://doi.org/10.4274/tjo.galenos.2021.29726
  13. Li F, Xiang W, Zhang L, et al. Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network. Eye (Lond). 2023;37(6):1080-1087. https://doi.org/10.1038/s41433-022-
  14. Noury E, Mannil SS, Chang RT, et al. Deep Learning for Glaucoma Detection and Identification of Novel Diagnostic Areas in Diverse Real-World Datasets. Transl Vis Sci Technol. 2022;11(5):11.  https://doi.org/10.1167/tvst.11.5.11
  15. Ran AR, Wang X, Chan PP, et al. Three-Dimensional Multi-Task Deep Learning Model to Detect Glaucomatous Optic Neuropathy and Myopic Features From Optical Coherence Tomography Scans: A Retrospective Multi-Centre Study. Front Med (Lausanne). 2022;9:860574. https://doi.org/10.3389/fmed.2022.860574
  16. Thiéry AH, Braeu F, Tun TA, Aung T, Girard MJA. Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma. Transl Vis Sci Technol. 2023;12(2):23.  https://doi.org/10.1167/tvst.12.2.23
  17. Braeu FA, Thiéry AH, Tun TA, et al. Geometric Deep Learning to Identify the Critical 3D Structural Features of the Optic Nerve Head for Glaucoma Diagnosis. Am J Ophthalmol. 2023;250:38-48.  https://doi.org/10.1016/j.ajo.2023.01.008
  18. Randhawa J, Chiang M, Porporato N, et al. Generalisability and performance of an OCT-based deep learning classifier for community-based and hospital-based detection of gonioscopic angle closure. Br J Ophthalmol. 2023;107(4):511-517.  https://doi.org/10.1136/bjophthalmol-2021-319470
  19. Hao J, Li F, Hao H, et al. Hybrid Variation-Aware Network for Angle-Closure Assessment in AS-OCT. IEEE Trans Med Imaging. 2022;41(2):254-265.  https://doi.org/10.1109/TMI.2021.3110602
  20. Eslami Y, Mousavi Kouzahkanan Z, Farzinvash Z, et al. Deep Learning-Based Classification of Subtypes of Primary Angle-Closure Disease With Anterior Segment Optical Coherence Tomography. J Glaucoma. 2023;32(6): 540-547.  https://doi.org/10.1097/IJG.0000000000002194
  21. Liu P, Higashita R, Guo PY, et al. Reproducibility of deep learning based scleral spur localisation and anterior chamber angle measurements from anterior segment optical coherence tomography images. Br J Ophthalmol. 2023; 107(6):802-808.  https://doi.org/10.1136/bjophthalmol-2021-319798
  22. Porporato N, Tun TA, Baskaran M, et al. Towards ‘automated gonioscopy’: a deep learning algorithm for 360° angle assessment by swept-source optical coherence tomography. Br J Ophthalmol. 2022;106(10):1387-1392. https://doi.org/10.1136/bjophthalmol-2020-318275
  23. Shan J, Li Z, Ma P, et al. Deep Learning Classification of Angle Closure based on Anterior Segment OCT. Ophthalmol Glaucoma. Epub 2023 Jul 16.  https://doi.org/10.1016/j.ogla.2023.06.011
  24. Chiang M, Guth D, Pardeshi AA, et al. Glaucoma Expert-Level Detection of Angle Closure in Goniophotographs With Convolutional Neural Networks: The Chinese American Eye Study. Am J Ophthalmol. 2021;226:100-107.  https://doi.org/10.1016/j.ajo.2021.02.004
  25. Li F, Yang Y, Sun X, et al. Digital Gonioscopy Based on Three-dimensional Anterior-Segment OCT: An International Multicenter Study. Ophthalmology. 2022;129(1):45-53.  https://doi.org/10.1016/j.ophtha.2021.09.018
  26. Wang W, Wang L, Wang X, Zhou S, Lin S, Yang J. A Deep Learning System for Automatic Assessment of Anterior Chamber Angle in Ultrasound Biomicroscopy Images. Transl Vis Sci Technol. 2021;10(11):21.  https://doi.org/10.1167/tvst.10.11.21
  27. Jiang W, Yan Y, Cheng S, et al. Deep Learning-Based Model for Automatic Assessment of Anterior Angle Chamber in Ultrasound Biomicroscopy. Ultrasound Med Biol. 2023;49(12):2497-2509. https://doi.org/10.1016/j.ultrasmedbio.2023.08.013
  28. Huang X, Jin K, Zhu J, et al. A Structure-Related Fine-Grained Deep Learning System With Diversity Data for Universal Glaucoma Visual Field Grading. Front Med (Lausanne). 2022;9:832920. https://doi.org/10.3389/fmed.2022.832920
  29. Wan Z, Cheng W, Li M, Zhu R, Duan W. GDNet-EEG: An attention-aware deep neural network based on group depth-wise convolution for SSVEP stimulation frequency recognition. Front Neurosci. 2023;17:1160040. https://doi.org/10.3389/fnins.2023.1160040
  30. Bunod R, Lubrano M, Pirovano A, et al. A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy. J Clin Med. 2023;12(2):507.  https://doi.org/10.3390/jcm12020507
  31. Li Z, Guo C, Lin D, et al. Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images. Br J Ophthalmol. 2021;105(11):1548-1554. https://doi.org/10.1136/bjophthalmol-2020-317327
  32. Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018;125(8):1199-1206. https://doi.org/10.1016/j.ophtha.2018.01.023
  33. Yang Y, Wu Y, Guo C, et al. Diagnostic Performance of Deep Learning Classifiers in Measuring Peripheral Anterior Synechia Based on Swept Source Optical Coherence Tomography Images. Front Med (Lausanne). 2022; 8:775711. https://doi.org/10.3389/fmed.2021.775711
  34. Huang X, Sun J, Gupta K, et al. Detecting glaucoma from multi-modal data using probabilistic deep learning. Front Med (Lausanne). 2022;9:923096. https://doi.org/10.3389/fmed.2022.923096
  35. Kihara Y, Montesano G, Chen A, et al. Policy-Driven, Multimodal Deep Learning for Predicting Visual Fields from the Optic Disc and OCT Imaging. Ophthalmology. 2022;129(7):781-791. 
  36. Mariottoni EB, Datta S, Dov D, et al. Artificial Intelligence Mapping of Structure to Function in Glaucoma. Transl Vis Sci Technol. 2020;9(2):19.  https://doi.org/10.1167/tvst.9.2.19
  37. Cho H, Hwang YH, Chung JK, et al. Deep Learning Ensemble Method for Classifying Glaucoma Stages Using Fundus Photographs and Convolutional Neural Networks. Curr Eye Res. 2021;46(10):1516-1524. https://doi.org/10.1080/02713683.2021.1900268
  38. Lim WS, Ho HY, Ho HC, et al. Use of multimodal dataset in AI for detecting glaucoma based on fundus photographs assessed with OCT: focus group study on high prevalence of myopia. BMC Med Imaging. 2022;22(1):206.  https://doi.org/10.1186/s12880-022-00933-z
  39. Kamalipour A, Moghimi S, Khosravi P, et al. Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements. Am J Ophthalmol. 2023;246:163-173.  https://doi.org/10.1016/j.ajo.2022.10.013
  40. Chen D, Ran Ran A, Fang Tan T, et al. Applications of Artificial Intelligence and Deep Learning in Glaucoma [published correction appears in: Asia Pac J Ophthalmol (Phila). 2023 Jul-Aug 01;12(4):422. Anram, Emma [corrected to Ran Ran, An]; Cheung, Carol [corrected to Cheung, Carol Y]]. Asia Pac J Ophthalmol (Phila). 2023;12(1):80-93.  https://doi.org/10.1097/APO.0000000000000596
  41. Xiong J, Li F, Song D, et al. Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy. Ophthalmology. 2022;129(2):171-180.  https://doi.org/10.1016/j.ophtha.2021.07.032
  42. Li Y, Han Y, Li Z, Zhong Y, Guo Z. A transfer learning-based multimodal neural network combining metadata and multiple medical images for glaucoma type diagnosis. Sci Rep. 2023;13(1):12076. https://doi.org/10.1038/s41598-022-27045-6
  43. Bowd C, Belghith A, Rezapour J, et al. Multimodal Deep Learning Classifier for Primary Open Angle Glaucoma Diagnosis Using Wide-Field Optic Nerve Head Cube Scans in Eyes With and Without High Myopia. J Glaucoma. 2023;32(10):841-847.  https://doi.org/10.1097/IJG.0000000000002267
  44. Rao DP, Shroff S, Savoy FM, et al. Evaluation of an offline, artificial intelligence system for referable glaucoma screening using a smartphone-based fundus camera: a prospective study. Eye (Lond). Epub 2023 Dec 13.  https://doi.org/10.1038/s41433-023-02826-z
  45. Shroff S, Rao DP, Savoy FM, et al. Agreement of a Novel Artificial Intelligence Software With Optical Coherence Tomography and Manual Grading of the Optic Disc in Glaucoma. J Glaucoma. 2023;32(4):280-286.  https://doi.org/10.1097/IJG.0000000000002147
  46. Idriss BR, Tran TM, Atwine D, Chang RT, Myung D, Onyango J. Smartphone-based Ophthalmic Imaging Compared With Spectral-domain Optical Coherence Tomography Assessment of Vertical Cup-to-disc Ratio Among Adults in Southwestern Uganda. J Glaucoma. 2021;30(3):e90-e98.  https://doi.org/10.1097/IJG.0000000000001779
  47. Nakahara K, Asaoka R, Tanito M, et al. Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone. Br J Ophthalmol. 2022;106(4): 587-592.  https://doi.org/10.1136/bjophthalmol-2020-318107
  48. Li F, Song D, Chen H, et al. Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection. NPJ Digit Med. 2020;3:123.  https://doi.org/10.1038/s41746-020-00329-9
  49. Dorofeev DA, Vizgalova LO, Gorobets AV, et al. The possibilities of artificial intelligence use in the assessment of Maklakov intraocular pressure prints. Natsional’nyi zhurnal glaukoma. 2020;19(1):20-27. (In Russ.). https://doi.org/10.25700/NJG.2020.01.03
  50. Yoo TK, Ryu IH, Kim JK, Lee IS, Kim HK. A deep learning approach for detection of shallow anterior chamber depth based on the hidden features of fundus photographs. Comput Methods Programs Biomed. 2022;219:106735. https://doi.org/10.1016/j.cmpb.2022.106735
  51. Soh ZD, Jiang Y, S/O Ganesan SS, et al. From 2 dimensions to 3rd dimension: Quantitative prediction of anterior chamber depth from anterior segment photographs via deep-learning. PLOS Digit Health. 2023;2(2):e0000193. https://doi.org/10.1371/journal.pdig.0000193
  52. Buisson M, Navel V, Labbé A, et al. Deep learning versus ophthalmologists for screening for glaucoma on fundus examination: A systematic review and meta-analysis. Clin Exp Ophthalmol. 2021;49(9):1027-1038. https://doi.org/10.1111/ceo.14000
  53. Jammal AA, Thompson AC, Mariottoni EB, et al. Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs. Am J Ophthalmol. 2020;211:123-131.  https://doi.org/10.1016/j.ajo.2019.11.006
  54. De Vente C, Vermeer KA, Jaccard N, et al. AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge. IEEE Trans Med Imaging. 2024; 43(1):542-557.  https://doi.org/10.1109/TMI.2023.3313786

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.