The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Yusef Yu.

Krasnov Research Institute of Eye Diseases;
I.M. Sechenov Moscow State Medical University (Sechenov University)

Plyukhova A.A.

Krasnov Research Institute of Eye Diseases

Yusef N.

Vienna School of International Studies

Artificial intelligence in assessment of individual risks of age-related macular degeneration progression

Authors:

Yusef Yu., Plyukhova A.A., Yusef N.

More about the authors

Journal: Russian Annals of Ophthalmology. 2025;141(2): 123‑128

Read: 946 times


To cite this article:

Yusef Yu, Plyukhova AA, Yusef N. Artificial intelligence in assessment of individual risks of age-related macular degeneration progression. Russian Annals of Ophthalmology. 2025;141(2):123‑128. (In Russ.)
https://doi.org/10.17116/oftalma2025141021123

Recommended articles:
Neuroprotective therapy for age-related macu­lar dege­neration. Russian Annals of Ophthalmology. 2024;(6):152-158
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36

References:

  1. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health. 2014;2:e106–e116. https://doi.org/10.1016/S2214-109X(13)70145-1
  2. Sheremet NL, Mikaelyan AA, Andreev AYu, Kiselev SL. Possibilities of treating retinal diseases accompanied by damage to the retinal pigment epithelium. Russian Annals of Ophthalmology=Vestnik oftal’mologii. 2019;135(5-20):226-234 (In Russ.). https://doi.org/10.17116/oftalma2019135052226
  3. Leuschen JN, Schuman SG, Winter KP, McCall MN, Wong WT, Chew EY, Hwang T, Srivastava S, Sarin N, Clemons T, Harrington M, Toth CA. Spectral-domain optical coherence tomography characteristics of intermediate age-related macular degeneration. Ophthalmology. 2013;120:140-150.  https://doi.org/10.1016/j.ophtha.2012.07.004
  4. Yim J, Chopra R, Spitz T, Winkens J, Obika A, Kelly C, Askham H, Lukic M, Huemer J, Fasler K, Moraes G, Meyer C, Wilson M, Dixon J, Hughes C, Rees G, Khaw PT, Karthikesalingam A, King D, Hassabis D, Suleyman M, Back T, Ledsam JR, Keane PA, De Fauw J. Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med. 2020;26(6):892-899.  https://doi.org/10.1038/s41591-020-0867-7
  5. Budzinskaya MV, Shelankova AV. Ruptures of the retinal pigment epithelium in age-related macular degeneration. Russian Annals of Ophthalmology=Vestnik oftal’mologii. 2021;137(3):115-120 (In Russ.). https://doi.org/10.17116/oftalma2021137031115
  6. Klein ML, Ferris FL 3rd, Armstrong J, Hwang TS, Chew EY, Bressler SB, Chandra SR; AREDS Research Group. Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology. 2008;115:1026-1031. https://doi.org/10.1016/j.ophtha.2007.08.030
  7. Waldstein SM. Vogl WD, Bogunovic H, Sadeghipour A, Riedl S, Schmidt-Erfurth U. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography. JAMA Ophthalmol. 2020; 138:740-747.  https://doi.org/10.1001/jamaophthalmol.2020.1376
  8. Damian I, Nicoară SD. SD-OCT biomarkers and the current status of artificial intelligence in predicting progression from intermediate to advanced AMD. Life (Basel). 2022;12(3):454.  https://doi.org/10.3390/life12030454
  9. Katalevskaya EA, Katalevsky DYu, Tyurikov MI, Velieva IA, Bolshunov AV. Prospects for the use of artificial intelligence in the diagnosis and treatment of retinal diseases. RMZh. Klinicheskaya oftal’mologiya. 2022;22(1):36-43 (In Russ.) https://doi.org/10.32364/2311-7729-2022-22-1-36-43
  10. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H. Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:1-29.  https://doi.org/10.1016/j.preteyeres.2018.07.004
  11. Bhuiyan A, Wong TY, Ting DSW, Govindaiah A, Souied EH, Smith RT. Artificial intelligence to stratify severity of age-related macular degeneration (AMD) and predict risk of progression to late AMD. Transl Vis Sci Technol. 2020;9(2):25.  https://doi.org/10.1167/tvst.9.2.25
  12. Romond K, Alam M, Kravets S, Sisternes L, Leng T, Lim JI, Rubin D, Hallak JA. Imaging and artificial intelligence for progression of age-related macular degeneration. Exp Biol Med (Maywood). 2021;246(20):2159-2169. https://doi.org/10.1177/15353702211031547
  13. Hallak JA, de Sisternes L, Osborne A, Yaspan B, Rubin DL, Leng T. Imaging, genetic, and demographic factors associated with conversion to neovascular age-related macular degeneration: secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 2019;137:738-744.  https://doi.org/10.1001/jamaophthalmol.2019.0868
  14. Yim J, Chopra R, Spitz T, Winkens J, Obika A, Kelly C, Askham H, Lukic M, Huemer J, Fasler K, Moraes G, Meyer C, Wilson M, Dixon J, Hughes C, Rees G, Khaw PT, Karthikesalingam A, King D, Hassabis D, Suleyman M, Back T, Ledsam JR, Keane PA, De Fauw J. Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med. 2020;26:1-8.  https://doi.org/10.1038/s41591-020-0867-7

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.