The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Golovchenko A.V.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Baum O.I.

Institute of Photonic Technologies of the Crystallography and Photonics Research Center

Bolshunov A.V.

Research Institute of Eye Diseases

Siplivy V.I.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Methods of studying deformation properties of ocular structures

Authors:

Golovchenko A.V., Baum O.I., Bolshunov A.V., Siplivy V.I.

More about the authors

Journal: Russian Annals of Ophthalmology. 2022;138(2): 114‑119

Read: 1804 times


To cite this article:

Golovchenko AV, Baum OI, Bolshunov AV, Siplivy VI. Methods of studying deformation properties of ocular structures. Russian Annals of Ophthalmology. 2022;138(2):114‑119. (In Russ.)
https://doi.org/10.17116/oftalma2022138021114

Recommended articles:
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
The resu­lts of fistulizing glaucoma surgeries in pseudophackic patients. Russian Annals of Ophthalmology. 2025;(1):45-52
Electrophysiological methods in the diagnosis and moni­toring of glaucoma. Russian Annals of Ophthalmology. 2025;(4):102-109

References:

  1. Avetisov SE, Bubnova IA, Antonov AA. Corneal biomechanics: clinical importance, evaluation, possibilities of sistemization of examination approach. Vestnik oftal’mologii. 2010;126(6):3-7. (In Russ.).
  2. Avetisov SE, Bolshunov AV, Khomchik OV, Fedorov AA, Siplivy VI, Baum OI, Omelchenko AI, Shcherbakov EM, Panchenko VYa, Sobol EN. Laser-induced increase in sclera water permeability in the treatment of resistant forms of open-angle glaucoma. Nacional’ny’j zhurnal glaukoma. 2015; 14(2):5-13. (In Russ.).
  3. Avetisov SE, Novikov IA, Bubnova IA, Antonov AA, Siplivyi VI. Determination of corneal elasticity coefficient using the ORA database. J Refract Surg. 2010;26(7):520-524.  https://doi.org/10.3928/1081597X-20091030-01
  4. Petrov SYu, Reschikova VS, Vostrukhin SV, Agajanyan TM, Podgornaya NN. Research of biomechanical properties of various eye structures: present and future. Oftal’mologiya. 2015;12(1):8-14. (In Russ.). https://doi.org/10.18008/1816-5095-2015-1-8-14
  5. Avetisov SE, Voronin GV. Experimental study of the mechanical characteristics of the cornea after excimer laser photoablation. Klinicheskaya oftal’mologiya. 2001;(3):83. (In Russ.).
  6. Avetisov SE, Bubnova IA, Antonov AA. Clinical and experimental aspects of investigation of biomechanical properties of corneoscleral membrane. Vestnik oftal’mologii. 2013;129(5):83-91. (In Russ.).
  7. Avetisov KS, Bahchieva NA, Avetisov SE, Novikov IA, Golovchenko AV, Shitikova AV. Atomic force microscopy in the study of the structures of the anterior segment of the eye. Vestnik oftal’mologii. 2020;136(1):103-110. (In Russ.). https://doi.org/10.17116/oftalma2020136011103
  8. Hoeltzel DA, Altman P, Buzard K, Choe K. Strip extensiometry for comparison of the mechanical response of bovine, rabbit and human corneas. J Biomech Eng. 1992;114:202-215.  https://doi.org/10.1115/1.2891373
  9. Avetisov SE, Antonov AA, Vostrukhin SV. Progressive hypermetropia after radial keratotomy: possible causes. Vestnik oftal’mologii. 2015;131(2):13-18. (In Russ.).
  10. Rozanova OI, Seliverstova NN, Shchuko AG, Malyshev VV. Regularities of structural and functional changes in the visual system in patients with myopic refraction during the development of presbyopia. Vestnik oftal’mologii. 2013;129(2):50-53. (In Russ.).
  11. Avetisov KS, Bakhchieva NA, Avetisov SE, Novikov IA, Belikov NV, Haidukova IV. Biomechanical parameters of the anterior lens capsule after manual and femtolaser capsulotomy. Vestnik oftal’mologii. 2019;135(1):4-11. (In Russ.).
  12. Sueiras VM, Moy VT, Ziebarth NM. Lens capsule structure assessed with atomic force microscopy. Mol Vis. 2015;21:316-323. 
  13. Ţălu Ş, Sueiras VM, Moy VT, Ziebarth NM. Micromorphology analysis of the anterior human lens capsule. Mol Vis. 2018;24:902-912. 
  14. Belaidi A, Pierscionek BK. Modeling internal stress distributions in the human lens: can opponent theories coexist? J Vis. 2007;(11):1-12.  https://doi.org/10.1167/7.11.1
  15. Petrov SYu, Aslamazova AE, Reschikova VS, Vostrukhin SV, Agajanyan TM. Prospects for the practical application of biomechanical research in ophthalmology. Klinicheskaya oftal’mologiya. 2016;(1):43-47. (In Russ.).
  16. Iomdina EN, Bauer SM, Kotlyar KE. Biomexanika glaza: teoreticheskie aspekty’ i klinicheskie prilozheniya [Biomechanics of the eye: theoretical aspects and clinical applications]. M.: Real time; 2015. (In Russ.).
  17. Volkov VV, Zhuravlev AI, Malyshev LK, Saulgozis YuZh, Nekrasov YuD, Pavilainen VYa. Current state and prospects of using the photoelastic method in ophthalmology. Oftal’mologicheskij zhurnal. 1990;(8):479-482. (In Russ.).
  18. Semchishen, AV, Semchishen VA. Measurements of corneal photoelasticity. Astigmatism and anomalies of internal stresses of the cornea. Al’manax klinicheskoj mediciny. 2008;17(2):128-132. (In Russ.).
  19. Vorobyova OK, Razumova IYu, Ambartsumyan AR. Differential diagnosis and treatment of episcleritis and scleritis. Vestnik oftal’mologi.i 2009;125(2):14-17. (In Russ.).
  20. Polyakova VR, Jashi BG, Melikhova IA. Study of the acoustic density of the lens using ultrasound biomicroscopy of the eye. Prakticheskaya medicina. 2016;6(98):134-136. (In Russ.).
  21. Avetisov SE, Bubnova IA, Petrov SYu, Antonov AA. The value of the corneal resistance factor in the interpretation of tonometry results. Nacional’ny’j zhurnal glaukoma. 2012;(1):12-15. (In Russ.).
  22. Avetisov SE, Bubnova IA, Antonov AA. Investigation of the influence of corneal biomechanical properties on tonometry parameters. Sibirskij nauchny’j medicinskij zhurnal. 2009;(4):30-33. (In Russ.).
  23. Avetisov SE. Opportunities and prospects for studying the biomechanical properties of the cornea. Rossijskie medicinskie vesti. 2011;16(1):94-96. (In Russ.).
  24. Volkova NV, Yurieva TN, Grishchuk AS, Mikhalevich IM. Correlations and correction coefficients for various types of tonometry. Biomechanics and biogeometry of the fibrous membrane of the eye. Message 2. Nacional’ny’j zhurnal glaukoma. 2016;15(1):37-45. (In Russ.).
  25. Avetisov SE, Egorova GB, Kobzova MV, Mitichkina TS, Rogova AYa. Clinical significance of modern methods of corneal assessment. Vestnik oftal’mologii. 2013;129(5):22-31. (In Russ.).
  26. Iomdina EN, Petrov SYu, Antonov AA, Novikov IA, Pakhomova IA, Archakov AYu. Corneoscleral membranel of the eye: possibilities for evaluating biomechanical properties in normal and pathological conditions. Oftal’mologiya. 2016;13(2):62-68. (In Russ.). https://doi.org/10.18008/1816-5095-2016-2-62-68
  27. Baum OI, Sobol EN, Bolshunov AV, Fedorov AA, Khomchik OV, Omelchenko AI, Shcherbakov EM. Microstructural changes in sclera under thermo-mechanical effect of 1.56 μm laser radiation increasing transscleral humour outflow. Lasers Surg Med. 2014;46(1):46-53.  https://doi.org/10.1002/lsm.22202
  28. Seifert J, Hammer CM, Rheinlaender J, Sel S, Scholz M, Paulsen F, Schäffer TE. Distribution of Young’s Modulus in Porcine Corneas after Riboflavin/UVA-Induced Collagen Cross-Linking as Measured by Atomic Force Microscopy. PLoS ONE. 2014;9(1):e88186. https://doi.org/10.1371/journal.pone.0088186
  29. Desse JM, Albe F, Tribillon JL. Real-time color holographic interferometry. Appl Opt. 2002;41(25):5326-5333. https://doi.org/10.1364/AO.41.005326
  30. Förster W, Stupp T, Kasprzak H. Holographic interferometry of excimer-laser-ablated bovine eyes: first results. Ophthalmologica. 2003;217:62-67.  https://doi.org/10.1159/000492670
  31. Baum OI, Omelchenko AI, Yuzhakov AV, Zaitsev VY, Sovetsky AA, Matveev LA, Sobol EN. Thermo-mechanical mechanism of laser-induced pore-formationin sclera for glaucoma treatment: AFM and OCT investigations. Proc SPIE 10685, Biophotonics: Photonic Solutions for Better Health Care VI. (2018). https://doi.org/10.1117/12.2309688688
  32. Zaitsev VY, Matveyev AL, Matveev LA, Gelikonov GV, Omelchenko AI, Shabanov DV, Baum OI, Svistushkin VM, Sobol EN. Optical coherence tomography for visualizing transient strains and measuring large deformations in laser-induced tissue reshaping. Las Phys Lett. 2016;13(11):115603. https://doi.org/10.1088/1612-2011/13/11/115603
  33. Zaitsev VYu, Matveyev AL, Matveev, LA, Gelikonov GV, Baum OI, Omelchenko AI, Shabanov DV, Sovetsky AA, Yuzhakov AV, Fedorov AA, Siplivy VI, Bolshunov AV, Sobol, EN. Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography. J Biophoton. 2019;12(3):e201800250.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.