The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Petrachkov D.V.

Research Institute of Eye Diseases

Budzinskaya M.V.

Krasnov Research Institute of Eye Diseases

Biomarkers of diabetic retinopathy on optical coherence tomography angiography

Authors:

Petrachkov D.V., Budzinskaya M.V.

More about the authors

Journal: Russian Annals of Ophthalmology. 2020;136(4): 344‑353

Read: 2712 times


To cite this article:

Petrachkov DV, Budzinskaya MV. Biomarkers of diabetic retinopathy on optical coherence tomography angiography. Russian Annals of Ophthalmology. 2020;136(4):344‑353. (In Russ.)
https://doi.org/10.17116/oftalma2020136042344

Recommended articles:
Diabetic reti­nopathy and pregnancy. Russian Annals of Ophthalmology. 2024;(6):145-151
Choroidal neovascularization asso­ciated with choroidal nevi. Russian Annals of Ophthalmology. 2025;(1):104-112

References:

  1. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 9th edition. Saharnyj diabet. 2019;22(1-1):1-121. (In Russ.). https://doi.org/10.14341/DM221S1
  2. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabeticmacular edema and related vision loss. Eye and Vision (London, England). 2015;2:17.  https://doi.org/10.1186/s40662-015-0026-2
  3. Pusparajah P, Lee LH, Abdul Kadir K. Molecular Markers of Diabetic Retinopathy: Potential Screening Tool of the Future? Frontiers in Physiology. 2016;7:200.  https://doi.org/10.3389/fphys.2016.00200
  4. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics. 2001;69(3):89-95.  https://doi.org/10.1067/mcp.2001.113989
  5. Don ES, Tarasov AV, Epshtein OI, Tarasov SA. The biomarkers in medicine: search, choice, study and validation. Klinicheskaya laboratornaya diagnostika. 2017;62(1):52-59. (In Russ.). https://doi.org/10.18821/0869-2084-2017-62-1-52-59
  6. Budzinskaya MV, Lipatov DV, Pavlov VG, Petrachkov DV. Biomarkers for diabetic retinopathy. Saharnyj diabet. 2020;23(1):88-94. (In Russ.). https://doi.org/10.14341/DM10045
  7. Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O’Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Review of Diabetic Studies. 2015;12(1-2):159-195.  https://doi.org/10.1900/RDS.2015.12.159
  8. Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged byfluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmoogy. 2015;133(1):45-50.  https://doi.org/10.1001/jamaophthalmol.2014.3616
  9. Choi W, Waheed NK, Moult EM, Adhi M, Lee B, De Carlo T, Jayaraman V, Baumal CR, Duker JS, Fujimoto JG. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy. Retina. 2017;37(1):11-21.  https://doi.org/10.1097/IAE.0000000000001250
  10. Chan G, Balaratnasingam C, Yu PK, Morgan WH, McAllister IL, Cringle SJ, Yu DY. Quantitative morphometry of perifoveal capillary networks in the human retina. Investigative Ophthalmology and Visual Science. 2012;53(9): 5502-5514. https://doi.org/10.1167/iovs.12-10265
  11. Hirano T, Hoshiyama K, Hirabayashi K, Wakabayashi M, Toriyama Y, Tokimitsu M,Murata T. Vitreoretinal Interface Slab in OCT Angiography for Detecting Diabetic Retinal Neovascularization. Ophthalmology Retina. 2020: 2468-6530(20)30017-8.  https://doi.org/10.1016/j.oret.2020.01.004
  12. Gildea D. The diagnostic value of optical coherence tomography angiography indiabetic retinopathy: a systematic review. International Ophthalmology. 2019;39(10):2413-2433. https://doi.org/10.1007/s10792-018-1034-8
  13. Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina. 2016;36(11):2039-2050. https://doi.org/10.1097/IAE.0000000000001077
  14. Al-Sheikh M, Akil H, Pfau M, Sadda SR. Swept-Source OCT Angiography Imaging of the Foveal Avascular Zone and Macular Capillary Network Density in Diabetic Retinopathy. Investigative Ophthalmology and Visual Science. 2016;57(8):3907-3913. https://doi.org/10.1167/iovs.16-19570
  15. Hirano T, Kitahara J, Toriyama Y, Kasamatsu H, Murata T, Sadda S. Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. British Journal of Ophthalmology. 2019;103(2):216-221.  https://doi.org/10.1136/bjophthalmol-2018-311942
  16. Gass JD. A fluorescein angiographic study of macular dysfunction secondary to retinal vascular disease. IV. Diabetic retinal angiopathy. Archives of Ophthalmology. 1968;80(5):583-591.  https://doi.org/10.1001/archopht.1968.00980050585004
  17. Alibhai AY, De Pretto LR, Moult EM, Or C, Arya M, McGowan M, Carrasco-Zevallos O, Lee B, Chen S, Baumal CR, Witkin AJ, Reichel E, de Freitas AZ, Duker JS, Fujimoto JG, Waheed NK. Quantification of retinal capillary nonperfusion in diabetics using wide-field optical coherence tomography angiography. Retina. 2020;40(3):412-420.  https://doi.org/10.1097/IAE.0000000000002403
  18. Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, Fine SL. Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology. 1991;98(7): 1139-1142. https://doi.org/10.1016/s0161-6420(91)32165-1
  19. Russell JF, Shi Y, Hinkle JW, Scott NL, Fan KC, Lyu C, Gregori G, Rosenfeld PJ. Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation. Ophthalmoogy Retina. 2019;3(4):350-361.  https://doi.org/10.1016/j.oret.2018.11.008
  20. Schwartz R, Khalid H, Sivaprasad S, Nicholson L, Anikina E, Sullivan P, PatelPJ, Balaskas K, Keane PA. Objective Evaluation of Proliferative Diabetic Retinopathy Using OCT. Ophthalmology Retina. 2020;4(2):164-174.  https://doi.org/10.1016/j.oret.2019.09.004
  21. Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2016;254(6):1051-1058. https://doi.org/10.1007/s00417-015-3148-2
  22. Couturier A, Mané V, Bonnin S, Erginay A, Massin P, Gaudric A, Tadayoni R. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina. 2015;35(11):2384-2391. https://doi.org/10.1097/IAE.0000000000000859
  23. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A. Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study. American Journal of Ophthalmology. 2015;160(1):35-44.  https://doi.org/10.1016/j.ajo.2015.04.021
  24. Grading diabetic retinopathy from stereoscopic color fundus photographs — an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 suppl):786-806.  https://doi.org/10.1016/S0161-6420(13)38012-9
  25. Khalid H, Schwartz R, Nicholson L, Huemer J, El-Bradey MH, Sim DA, Patel PJ, Balaskas K, Hamilton RD, Keane PA, Rajendram R. Widefield optical coherence tomography angiography for early detection and objective evaluation of proliferative diabetic retinopathy. British Journal of Ophthalmology. 2020:bjophthalmol-2019-315365. https://doi.org/10.1136/bjophthalmol-2019-315365
  26. Ostri C, Lund-Andersen H, Sander B, Hvidt-Nielsen D, Larsen M. Bilateraldiabetic papillopathy and metabolic control. Ophthalmology. 2010;117(11): 2214-2217. https://doi.org/10.1016/j.ophtha.2010.03.006
  27. Chu Z, Lin J, Gao C, Xin C, Zhang Q, Chen CL, Roisman L, Gregori G, Rosenfeld PJ, Wang RK. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. Journal of Biomedical Optics. 2016;21(6):66008. https://doi.org/10.1117/1.JBO.21.6.066008
  28. Conti FF, Qin VL, Rodrigues EB, Sharma S, Rachitskaya AV, Ehlers JP, Singh RP. Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography. British Journal of Ophthalmology. 2019; 103(4):452-456.  https://doi.org/10.1136/bjophthalmol-2018-311903
  29. Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, Wilson DJ, Huang D, Jia Y. Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmology. 2016;134(4):367-373.  https://doi.org/10.1001/jamaophthalmol.2015.5658
  30. Neroev VV, Okhotsimskaya TD, Fadeeva VA. An account of retinal microvascular changes in diabetes acquired by OCT-angiography. Rossijskij oftal’mologicheskij zhurnal. 2017;10(2):40-45. (In Russ.). https://doi.org/10.21516/2072-0076-2017-10-2-40-45
  31. Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, HsiaoYS, Zhou Q, Ko T, Rosen RB. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathypatients. Retina. 2015;35(11):2353-2363. https://doi.org/10.1097/IAE.0000000000000862
  32. Ting DSW, Tan GSW, Agrawal R, Yanagi Y, Sie NM, Wong CW, San Yeo IY, Lee SY, Cheung CMG, Wong TY. Optical Coherence Tomographic Angiography in Type 2 Diabetes and Diabetic Retinopathy. JAMA Ophthalmoogy. 2017;135(4):306-312.  https://doi.org/10.1001/jamaophthalmol.2016.5877
  33. Sambhav K, Abu-Amero KK, Chalam KV. Deep Capillary Macular Perfusion Indices Obtained with OCT Angiography Correlate with Degree of Nonproliferative Diabetic Retinopathy. European Journal of Ophthalmology. 2017; 27(6):716-729.  https://doi.org/10.5301/ejo.5000948
  34. Alam M, Zhang Y, Lim JI, Chan RVP, Yang M, Yao X. Quantitative optical coherence tomography angiography features for objective classification and staging of diabetic retinopathy. Retina. 2020;40(2):322-332.  https://doi.org/10.1097/IAE.0000000000002373
  35. Gendelman I, Alibhai AY, Moult EM, Levine ES, Braun PX, Mehta N, Zhao Y, Ishibazawa A, Sorour OA, Baumal CR, Witkin AJ, Reichel E, Fujimoto JG, Duker JS, Waheed NK. Topographic analysis of macular choriocapillaris flow deficits in diabetic retinopathy using swept — source optical coherence tomography angiography. International Journal of Retina and Vitreous. 2020;6:6.  https://doi.org/10.1186/s40942-020-00209-0
  36. Zueva MV. Nonlinear fractals: applications in physiology and ophthalmology. Oftal’mologiya. 2014;11(1):4-11. (In Russ.). https://doi.org/10.18008/1816-5095-2014-1-4-11
  37. Zahid S, Dolz-Marco R, Freund KB, Balaratnasingam C, Dansingani K, Gilani F,Mehta N, Young E, Klifto MR, Chae B, Yannuzzi LA, Young JA. Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes with Diabetic Retinopathy. Investigative Ophthalmology and Visual Science. 2016;57(11):4940-4947. https://doi.org/10.1167/iovs.16-19656
  38. Ashraf M, Nesper PL, Jampol LM, Yu F, Fawzi AA. Statistical Model of Optical Coherence Tomography Angiography Parameters That Correlate With Severity of Diabetic Retinopathy. Investigative Ophthalmology and Visual Science. 2018;59(10):4292-4298. https://doi.org/10.1167/iovs.18-24142
  39. Tsai ASH, Gan ATL, Ting DSW, Wong CW, Teo KYC, Tan ACS, Lee SY, Wong TY, Tan GSW, Gemmy Cheung CM. Diabetic macular ischemia: Correlation of Retinal Vasculature Changes by Optical Coherence Tomography Angiography and Functional Deficit. Retina. 2019. Online ahead of print. https://doi.org/10.1097/IAE.0000000000002721
  40. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35(11):2377-2383. https://doi.org/10.1097/IAE.0000000000000849
  41. Krawitz BD, Mo S, Geyman LS, Agemy SA, Scripsema NK, Garcia PM, Chui TYP, Rosen RB. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vision Research. 2017;139:177-186.  https://doi.org/10.1016/j.visres.2016.09.019
  42. Johannesen SK, Viken JN, Vergmann AS, Grauslund J. Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: asystematic review. Acta Ophthalmologica. 2019;97(1):7-14.  https://doi.org/10.1111/aos.13859
  43. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. Investigative Ophthalmology and Visual Science. 2016;57(9):362-370.  https://doi.org/10.1167/iovs.15-18904
  44. de Carlo TE, Chin AT, Joseph T, Baumal CR, Witkin AJ, Duker JS, Waheed NK. Distinguishing Diabetic Macular Edema From Capillary Nonperfusion Using Optical Coherence Tomography Angiography. Ophthalmic Surgery, Lasers and Imaging Retina. 2016;47(2):108-114.  https://doi.org/10.3928/23258160-20160126-02
  45. Sun Z, Tang F, Wong R, Lok J, Szeto SKH, Chan JCK, Chan CKM, Tham CC, Ng DS, Cheung CY. OCT Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema: A Prospective Study. Ophthalmology. 2019;126(12):1675-1684. https://doi.org/10.1016/j.ophtha.2019.06.016
  46. Hirano T, Kakihara S, Toriyama Y, Nittala MG, Murata T, Sadda S. Wide-field enface swept-source optical coherence tomography angiography using extended fieldimaging in diabetic retinopathy. British Journal of Ophthalmology. 2018;102(9):1199-1203. https://doi.org/10.1136/bjophthalmol-2017-311358
  47. Uji A, Yoshimura N. Application of extended field imaging to optical coherencetomography. Ophthalmology. 2015;122(6):1272-1274. https://doi.org/10.1016/j.ophtha.2014.12.035
  48. Schaal KB, Munk MR, Wyssmueller I, Berger LE, Zinkernagel MS, Wolf S. Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging. Retina. 2019; 39(1):79-87.  https://doi.org/10.1097/IAE.0000000000001938
  49. Silva PS, Dela Cruz AJ, Ledesma MG, van Hemert J, Radwan A, Cavallerano JD, Aiello LM, Sun JK, Aiello LP. Diabetic Retinopathy Severity and Peripheral Lesions Are Associated with Nonperfusion on Ultrawide Field Angiography. Ophthalmology. 2015;122(12):2465-2472. https://doi.org/10.1016/j.ophtha.2015.07.034
  50. Ishibazawa A, Nagaoka T, Yokota H, Takahashi A, Omae T, Song YS, Takahashi T, Yoshida A. Characteristics of Retinal Neovascularization in Proliferative Diabetic Retinopathy Imaged by Optical Coherence Tomography Angiography. Investigative Ophthalmology and Visual Science. 2016;57(14): 6247-6255. https://doi.org/10.1167/iovs.16-20210
  51. You QS, Guo Y, Wang J, Wei X, Camino A, Zang P, Flaxel CJ, Bailey ST, Huang D, Jia Y, Hwang TS. Detection of clinically unsuspected retinal neovascularizationwith wide-field optical coherence tomography angiography. Retina. 2020;40(5):891-897.  https://doi.org/10.1097/IAE.0000000000002487
  52. Couturier A, Rey PA, Erginay A, Lavia C, Bonnin S, Dupas B, Gaudric A, Tadayoni R. Widefield OCT-Angiography and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti-Vascular Endothelial Growth Factor. Ophthalmology. 2019;126(12): 1685-1694. https://doi.org/10.1016/j.ophtha.2019.06.022

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.