The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Brovkina A.F.

Russian Medical Academy of Continuous Professional Education;
Botkin Hospital

Kabardikova L.A.

Russian Medical Academy of Continuous Professional Education;
Moscow Multidisciplinary Scientific and Clinical Center named after S.P. Botkin

Shcherbakov P.A.

Moscow Multidisciplinary Scientific and Clinical Center named after S.P. Botkin

Bure I.V.

Russian Medical Academy of Continuous Professional Education

Mirzaev K.B.

Russian Medical Academy of Continuous Postgraduate Education

Uveal melanoma and its local inflammation — good or bad for the patient?

Authors:

Brovkina A.F., Kabardikova L.A., Shcherbakov P.A., Bure I.V., Mirzaev K.B.

More about the authors

Journal: Russian Annals of Ophthalmology. 2025;141(1): 5‑12

Read: 1125 times


To cite this article:

Brovkina AF, Kabardikova LA, Shcherbakov PA, Bure IV, Mirzaev KB. Uveal melanoma and its local inflammation — good or bad for the patient? Russian Annals of Ophthalmology. 2025;141(1):5‑12. (In Russ.)
https://doi.org/10.17116/oftalma20251410115

Recommended articles:
Myokines — the cardiometabolic risk pote­ntial biomarkers. Russian Journal of Preventive Medi­cine. 2025;(7):119-126

References:

  1. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60(3):319-326.  https://doi.org/10.1007/s00262-010-0968-0
  2. O’Connell RM, Kahn D, Gibson WSJ, Round JL, Scholz RL, Chaudhuri AA, Kahn ME, Rao DS, Baltimore D. MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing Inflammatory T Cell Development. Immunity. 2010;33(4):607-619.  https://doi.org/10.1016/j.immuni.2010.09.009
  3. Vigorito E, Kohlhaas S, Lu D, Leyland R. miR-155: an ancient regulator of the immune system. Immunol Rev. 2013;253(1):146-157.  https://doi.org/10.1111/imr.12057
  4. Morozov VI. Hematoophthalmic barrier: structural and functional features. Rossijskij oftal’mologicheskij zhurnal. 2017;10(4):68-72 (In Russ.). https://doi.org/10.21516/2072-0076-2017-10-4-68-72
  5. Hodge J, Wang F, Wang J, Liu Q, Saaoud F, Wang Y, Singh UP, Chen H, Luo M, Ai W, Fan D. Overexpression of microRNA-155 enhances the efficacy of dendritic cell vaccine against breast cancer. Oncoimmunology. 2020; 9(1):e1724761. https://doi.org/10.1080/2162402x.2020.1724761
  6. Monnot GC, Martinez-Usatorre A, Lanitis E, Lopes SF, Cheng WC, Ho PC, Irving M, Coukos G, Donda A, Romero P. miR-155 Overexpression in OT-1 CD8+ T Cells Improves Anti-Tumor Activity against Low-Affinity Tumor Antigen. Mol Ther Oncolytics. 2020;16:111-123.  https://doi.org/10.1016/j.omto.2019.12.008
  7. Croci DO, Zacarías Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother. 2007;56(11):1687-1700. https://doi.org/10.1007/s00262-007-0343-y
  8. Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, Snyder H, Feun LG, Livingstone AS, Harbour JW. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun. 2020;11(1):496.  https://doi.org/10.1038/s41467-019-14256-1
  9. Kujala E, Mäkitie T, Kivelä T. Very Long-Term Prognosis of Patients with Malignant Uveal Melanoma. Invest Ophthalmol Vis Sci. 2003;44(11):4651-4659. https://doi.org/10.1167/iovs.03-0538
  10. Bronkhorst IH, Jager MJ. Uveal Melanoma: The Inflammatory Microenvironment. J Innate Immun. 2012;4(5-6):454-462.  https://doi.org/10.1159/000334576
  11. Saakyan SV, Zakharova GP, Myakoshina EB. Cellular microenvironment of uveal melanoma: clinical and morphological correlations and predictors of unfavorable prognosis. Molekulyarnaya medicina. 2020;18(3):27-33 (In Russ.). https://doi.org/10.29296/24999490-2020-03-04
  12. Shamanova AYu, Kazachkov EL, Panova IE, Vazhenin AV, Shamaeva TN, Alymov EA. Features of the lymphocytic microenvironment in metastatic uveal melanoma. Ural’skij medicinskij zhurnal. 2021;20(2):36-42 (In Russ.). https://doi.org/10.52420/2071-5943-2021-20-2-36-42
  13. Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, Carasi S, Palmieri D, Costinean S, Shapiro CL, Huebner K, Croce CM. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A. 2014;111(12):4536-4541. https://doi.org/10.1073/pnas.1402604111
  14. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY, Cheng JQ. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33(6):679-689.  https://doi.org/10.1038/onc.2012.636
  15. Van Roosbroeck K, Fanini F, Setoyama T, Ivan C, Rodriguez-Aguayo C, Fuentes-Mattei E, Xiao L, Vannini I, Redis RS, D’Abundo L, Zhang X, Nicoloso MS, Rossi S, Gonzalez-Villasana V, Rupaimoole R, Ferracin M, Morabito F, Neri A, Ruvolo PP, Calin GA. Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clin Cancer Res. 2017; 23(11):2891-2904. https://doi.org/10.1158/1078-0432.ccr-16-1025
  16. Tili E, Croce CM, Michaille JJ. miR-155: On the Crosstalk Between Inflammation and Cancer. Int Rev Immunol. 2009;28(5):264-284.  https://doi.org/10.1080/08830180903093796
  17. Zhang J, Cheng C, Yuan X, He JT, Pan QH, Sun FY. microRNA-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(2): 602-610.  https://doi.org/10.1016/j.ijcep.2014.01.015
  18. Mahesh G, Biswas R. MicroRNA-155: A Master Regulator of Inflammation. J Interferon Cytokine Res. 2019;39(6):321-330.  https://doi.org/10.1089/jir.2018.0155
  19. Brovkina AF, Yarovaya GA, Tsybikova ND. MicroRNA in Ophthalmology. Ophthalmology in Russia. 2021;18(2):188-197 (In Russ.). https://doi.org/10.18008/1816-5095-2021-2-188-197
  20. Wang J, Wang Q, Guan Y, et al. Breast cancer cell–derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and antitumor function. J Clin Invest. 2022;132(19):e157248. https://doi.org/10.1172/jci157248
  21. Guo J, Jiang W, Xu X, Zheng X. Serum microRNA-155 in early diagnosis and prognosis of breast cancer. Int J Clin Exp Med. 2016;9(6):10289-10295. https://doi.org/10.18203/ijcem.2016.06.10289
  22. Shooshtarian B, Mohammadi-Asl J, Kohan L. The diagnostic value of miR-155 expression in the serum of patients with breast cancer according to molecular subtypes of breast cancer. Jentashapir J Health Res. 2017;8(2). https://doi.org/10.5812/jjhr.59937
  23. Hosseini Mojahed F, Ghasemi A, Rahimi M, Shafiee M, Azizi E, Mohammadi M. Clinical Evaluation of the Diagnostic Role of MicroRNA-155 in Breast Cancer. Int J Genomics. 2020;2020:9514831. https://doi.org/10.1155/2020/9514831
  24. Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: A new player enters the game. Oncotarget. 2015;6(7):4562-4568. https://doi.org/10.18632/oncotarget.2923
  25. Peng J, Liu H, Liu C. MiR-155 Promotes Uveal Melanoma Cell Proliferation and Invasion by Regulating NDFIP1 Expression. Technol Cancer Res Treat. 2017;16(6):1160-1167. https://doi.org/10.1177/1533034617737923
  26. Aughton K, Kalirai H, Coupland SE. MicroRNAs and Uveal Melanoma: Understanding the Diverse Role of These Small Molecular Regulators. Int J Mol Sci. 2020;21(16):5648. https://doi.org/10.3390/ijms21165648
  27. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(1):155-162.  https://doi.org/10.1093/nar/gky1141
  28. Rodríguez MFB, Fernandez MB, Baameiro LN, et al. Blood Biomarkers of Uveal Melanoma: Current Perspectives. Clin Ophthalmol. 2020;14:157-169.  https://doi.org/10.2147/OPTH.S199064
  29. Brovkina AF, Tsybikova ND. MicroRNA as a Biomarker of Choroidal Melanoma Aggressiveness. Rossiyskiy oftalmologicheskiy zhurnal. 2022;15(1):7-12 (In Russ.). https://doi.org/10.21516/2072-0076-2022-15-1-7-12
  30. He M, Xu Z, Ding T, Kuang DM, Zheng L. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol. 2009;6(5):343-352.  https://doi.org/10.1038/cmi.2009.45
  31. Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, Saw RP, Thompson JF. Tumor-Infiltrating Lymphocyte Grade Is an Independent Predictor of Sentinel Lymph Node Status and Survival in Patients With Cutaneous Melanoma. J Clin Oncol. 2012;30(21):2678-2683. https://doi.org/10.1200/JCO.2011.37.8539
  32. Narasimhaiah D, Legrand C, Damotte D, Remark R, Munda M, De Potter P, Coulie PG. DNA alteration-based classification of uveal melanoma gives better prognostic stratification than immune infiltration, which has a neutral effect in high-risk group. Cancer Med. 2019;8(5):2122-2131. https://doi.org/10.1002/cam4.2122
  33. Durie FH, Campbell AM, Lee WR, Damato BE. Analysis of lymphocytic infiltration in uveal melanoma. Investigative Ophthalmology & Visual Science. 1990; 31(10): 2106—2110.
  34. Lagouros E, Salomao D, Thorland E, Hodge DO, Vile R, Pulido JS. Infiltrative T regulatory cells in enucleated uveal melanomas. Trans Am Ophthalmol Soc. 2009;107:223-228.  https://doi.org/10.5555/20126498
  35. Mougiakakos D, Johansson CC, Trocme E, All-Ericsson C, Economou MA, Larsson O, Seregard S, Kiessling R. Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer. 2010;116(9):2224-2233. https://doi.org/10.1002/cncr.24999
  36. Eremeeva ER, Setdikova GR, Grishina EE, Kim ID, Shikina VE. Analysis of Lymphoid Infiltration in Uveal Melanoma. Zlokachestvennye opukholi. 2022;12(3S1):188 (In Russ.).
  37. Wu R, Forget MA, Chacon J, Bernatchez C, Haymaker C, Chen JQ, Hwu P, Radvanyi LG. Adoptive T-cell Therapy Using Autologous Tumor-infiltrating Lymphocytes for Metastatic Melanoma: Current Status and Future. Cancer J. 2012;18(2):160-175.  https://doi.org/10.1097/PPO.0b013e318247bcec
  38. Krishna Y, McCarthy C, Kalirai H, Coupland SE. Inflammatory cell infiltrates in advanced metastatic uveal melanoma. Hum Pathol. 2017;66:159-166.  https://doi.org/10.1016/j.humpath.2017.06.005
  39. Javed A, Milhem M. Role of Natural Killer Cells in Uveal Melanoma. Cancers (Basel). 2020;12(12):3694. https://doi.org/10.3390/cancers12123694
  40. Gencia I, Baderca F, Avram S, Gogulescu A, Marcu A, Seclaman E, Marian C, Solovan C. A preliminary study of microRNA expression in different types of primary melanoma. Bosn J Basic Med Sci. 2020;20(2):197-208.  https://doi.org/10.17305/bjbms.2020.4271

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.