The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sheremet N.L.

FGBU "NII glaznykh bolezneĭ" RAMN

Andreeva N.A.

Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021

Shmel'kova M.S.

Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021

Tsygankova P.G.

FGBU "Mediko-geneticheskiĭ nauchnyĭ tsentr RAMN"

Mitochondrial biogenesis in hereditary optic neuropathies

Authors:

Sheremet N.L., Andreeva N.A., Shmel'kova M.S., Tsygankova P.G.

More about the authors

Journal: Russian Annals of Ophthalmology. 2019;135(5): 85‑91

Read: 206 times


To cite this article:

Sheremet NL, Andreeva NA, Shmel'kova MS, Tsygankova PG. Mitochondrial biogenesis in hereditary optic neuropathies. Russian Annals of Ophthalmology. 2019;135(5):85‑91. (In Russ.)
https://doi.org/10.17116/oftalma201913505185

Recommended articles:
Oxidative stress in the pathogenesis of chro­nic headache. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):35-40
Oxidative stress and antioxidant protection in diso­rders of cere­bral circulation. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):114-119
Psoriasis: analysis of como­rbid pathology. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(1):16-21
Clinical and anamnestic features of rosa­cea in women in peri­menopausal period. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(1):49-55
Sleep deprivation and the deve­lopment of oxidative stress in animal models. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3):124-129
The main mechanisms of deve­lopment of cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):13-18
Therapeutic pote­ntial of quercetin and its deri­vatives against COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5):44-50

References:

  1. Yu-Wai-Man P, Griffiths P, Chinnery PF. Mitochondrial optic neuropathies — Disease mechanisms and therapeutic strategies. Progress in Retinal and Eye Reseach. 2011;30(2-2):81-114. https://doi.org/10.1016/j.preteyeres.2010.11.002 Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Progress in Retinal and Eye Reseach. 2004;23(1):53-89. https://doi.org/10.1016/j.preteyeres.2003.10.003
  2. Leber’s Hereditary Optic Neuropathy (LHON) Disease Mutations. Accessed July 17, 2019. Available at: https://www.mitomap.org//bin/view.pl/MITOMAP/MutationsLHON
  3. Nevinitsyna TA, Sheremet NL. Molecular mechanisms and pathogenetic treatment of mitochondrial optic neuropathies. Vestnik oftal’mologii. 2016;132(1):91-96. (In Russ.) https://doi.org/10.17116/oftalma2016132191-96
  4. Yu-Wai-Man P, Chinnery PF. Dominant optic atrophy: novel OPA1 mutations and revised prevalence estimates. Ophthalmology. 2013;120(8):1712. https://doi.org/10.1016/j.ophtha.2013.04.022
  5. Kjer P. Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Ophthalmologica Supplementum. 1959;164(suppl 54):1-147. https://doi.org/10.1111/j.1755-3768.1959.tb03493.x
  6. Votruba M, Moore AT, Bhattacharya SS. Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. Journal of Medical Genetics. 1998;35:793-800. https://doi.org/10.1136/jmg.35.10.793
  7. Rüther K. Hereditary Optic Neuropathies. Klinische Monatsblätter für Augenheilkunde. 2018;235(06):747-763. https://doi.org/10.1055/a-0583-6290
  8. Leruez S, Amati-Bonneau P, Verny B, Reynier P, Procaccio V, Bonneau D, Milea D. Dysfonctionnement mitochondrial et atteinte des voies visuelles. Revue Neurologique. 2014;170(5):344-354. https://doi.org/10.1016/j.neurol.2014.03.009
  9. Friedman JR, Nunnar J. Mitochondrial form and function. Nature. 2014;505(7483):335-343. https://doi.org/10.1038/nature12985
  10. Nunnari J, Suomalainen A. Mitochondria: In Sickness and in Health. Cell. 2012;148(6):1145-1159. https://doi.org/10.1016/j.cell.2012.02.035
  11. Malik A, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion. 2013;13:481-492. https://doi.org/10.1016/j.mito.2012.10.011
  12. Herst PM, Rowe MR, Carson GM, Berridge MV. Functional Mitochondria in Health and Disease. Frontiers in Endocrinology. 2017;8:296. https://doi.org/10.3389/fendo.2017.00296
  13. Newman NJ. Hereditary optic neuropathies: from the mitochondria to the optic nerve. American Journal of Ophthalmology. 2005;140(3):517-523. https://doi.org/10.1016/j.ajo.2005.03.017
  14. Holloszy JO. Biochemical Adaptations in Muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. The Journal of Biological Chemistry. 1967;242:2278-2282. https://doi.org/10.1007/978-1-4613-4609-8_5
  15. Knez J, Winckelmans E, Plusquin M, Thijs L, Cauwenberghs N, Gu Y. Correlates of Peripheral Blood Mitochondrial DNA Content in a General Population. American Journal of Epidemiology. 2016;183(2):138-146. https://doi.org/10.1097/01.hjh.0000467354.97086.23
  16. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays in Biochemistry. 2010;47:69-84. https://doi.org/10.1042/bse0470069
  17. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. The American Journal of Clinical Nutrition. 2011;93(4):884-890. https://doi.org/10.3945/ajcn.110.001917
  18. Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clinical Ophthalmology. 2015;9:1165-1176. https://doi.org/10.2147/opth.s62021
  19. Yu-Wai-Man P, Chinnery PF. Leber Hereditary Optic Neuropathy. Gene Reviews. 2016. Accessed July 17, 2019. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1174/ https://doi.org/10.1016/b978-0-12-800877-5.00007-3
  20. Giordano C, Yu-Wai-Man P, Chinnery PF, Carelli V. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy. Brain. 2014;137:335-353. https://doi.org/10.1093/brain/awt343
  21. Bianco A, Bisceglia L, Russo L, Palese L, D’Agruma L, Emperador S, Montoya J, Guerriero S, Petruzzella V. High Mitochondrial DNA Copy Number Is a Protective Factor From Vision Loss in Heteroplasmic Leber’s Hereditary Optic Neuropathy (LHON). Investigative Ophthalmology and Visual Science. 2017;58(4):2193-2197. https://doi.org/10.1167/iovs.16-20389
  22. Iommarini L, Maresca A, Caporali L, Valentino ML, Liguori R, Giordano C, Carelli V. Revisiting the issue of mitochondrial DNA content in optic mitochondriopathies. Neurology. 2012;79(14):1517-1519. https://doi.org/10.1212/wnl.0b013e31826d5f72
  23. Behl C, Holsboer F. The female sex hormone oestrogen as a neuroprotectant. Trends in Pharmacological Sciences. 1999;20(11):441-444. https://doi.org/10.1016/s0165-6147(99)01392-9
  24. Giordano C, Iommarini L, Pisano A, Caporali L. Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain. 2014;137:335-353. https://doi.org/10.1093/brain/awq276
  25. Pisano A, Preziuso C, Iommarini L, Perli E, Grazioli P, Sadun A. Targeting estrogen receptor β as preventive therapeutic strategy for Leber’s hereditary optic neuropathy. Human Molecular Genetics. 2015;24(24):6921-6931. https://doi.org/10.1093/hmg/ddv396
  26. Zhao L, Mao Z, Brinton RD. A select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology. 2009;150(2):770-783. https://doi.org/10.1210/en.2008-0715
  27. Giordano L, Sadun AA, Carelli V. Cigarette toxicity triggers Leber’s hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways. Cell Death and Disease. 2015;17(6):e2021. https://doi.org/10.1210/en.2008-0715
  28. Mackey DA, Fingert JH, Luzhansky JZ, McCluskey PJ, Howell N, Hall AJ, Pierce AB, Hoy JF. Leber’s hereditary optic neuropathy triggered by antiretroviral therapy for human immunodeficiency virus. Eye. 2003;17:312-317. https://doi.org/10.1038/sj.eye.6700362
  29. Seo JH, Hwang JM, Park SS. Antituberculosis medication as a possible epigenetic factor of Leber’s hereditary opticneuropathy. Clinical and Experimental Ophthalmology. 2013;38(4):363-366. https://doi.org/10.1111/j.1442-9071.2010.02240.x
  30. White AJ. Mitochondrial toxicity and HIV therapy. Sexually Transmitted Infections. 2001;77:158-173. https://doi.org/10.1136/sti.77.3.158
  31. Côté H. Mechanisms of antiretroviral therapy-induced mitochondrial dysfunction. Current Opinion on HIV and AIDS. 2007;2(4):253-260. https://doi.org/10.1097/coh.0b013e3281df3410
  32. Koul P. Ocular toxicity with ethambutol therapy: Timely recaution. Lung India. 2015;32(1):1-3. https://doi.org/10.4103/0970-2113.148395
  33. Melamud A, Kosmorsky G, Lee M. Ocular Ethambutol Toxicity. Mayo Clinic Proceedings. 2003;78(11):1409-1411. https://doi.org/10.4065/78.11.1409
  34. Tan AK, Mallika PS, Aziz S, Asok T, Intan G. Ethambutol Ocular Toxicity in a patient with occulat tuberculosis. Malaysian Family Physician. 2008;3(2):87-90.
  35. Mason CG. Ocular accumulation and toxicity of certain systemically administered drugs. Journal of Toxicology and Environmental Health. 1997;2(5):977-995. https://doi.org/10.1080/15287397709529497
  36. Grzybowski A, Zülsdorff M, Wilhelm H, Tonagel F. Toxic optic neuropathies: an updated review. Acta Ophthalmologica. 2015;93(5):402-410. https://doi.org/10.1111/aos.12515
  37. Kushik J, Chandrabhan D. Ocular toxicity from pesticide exposure: A recent review. Environmental Health and Preventive Medecine. 2006;11(3):102-107. https://doi.org/10.1265/ehpm.11.102
  38. Williams JA, Zhao K, Jin S, Ding W-X. New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Experimental Biology and Medicine. 2017;242(8):781-787. https://doi.org/10.1177/1535370216688802
  39. Laker RC, Xu P, Ryall KA, Sujkowski AA. Novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. Journal of Biological Chemistry. 2014;25:289(17):12005-12015. https://doi.org/10.1074/jbc.m113.530527
  40. Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Frontiers in Neuroscience. 2015;1:9:320. https://doi.org/10.3389/fnins.2015.00320
  41. Sheremet NL, Nevinitsyna TA, Zhorzholadze NV, Ronzina IA, Itkis YuS, Krylova TD, Tsygankova PG, Malakhova VA, Zakharova EY, Tokarchuk AV, Panteleeva AA, Karger EM, Lyamzaev KG, Avetisov SE. Previously Unclassified Mutation of mtDNA m.3472T>C: Evidence of Pathogenicity in Leber’s Hereditary Optic Neuropathy. Biohimiya. 2016;81(7):982-990. (In Russ.) https://doi.org/10.1134/s0006297916070117
  42. Gourlain K, Amellal B, Arkoub Z, Dupin K, Katlama C, Calvez V. Quantitative analysis of human mitochondrial DNA using a real-time PCR assay. HIV Medicine. 2003;4(3):287-292. https://doi.org/10.1046/j.1468-1293.2003.00158.x
  43. Suomalainen A. Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. Expert Opinion on Medical Diagnostics. 2013;7(4):313-317. https://doi.org/10.1517/17530059.2013.812070
  44. Woo YC, Xu A, Wang Y, Lam K. Fibroblast Growth Factor 21 as an emerging metabolic regulator: clinical perspectives. Clinical Endocrinology. 2013;78(4):489-496. https://doi.org/10.1111/cen.12095
  45. Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annual Revue on Biochemistry. 2007;76:701-722. https://doi.org/10.1146/annurev.biochem.76.052305.091720
  46. Montero R, Yubero D, Villarroya J, Henares D, Jou C, Rodríguez MA, Ramos F, Nascimento A, Ortez CI, Campistol J, Perez-Dueñas B, O’Callaghan M, Pineda M, Garcia-Cazorla A, Oferil JC, Montoya J, Ruiz-Pesini E, Emperador S, Meznaric M, Campderros L, Kalko SG, Villarroya F, Artuch R, Jimenez-Mallebrera C. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PLoS ONE. 2016;11(2):e0148709. https://doi.org/10.1371/journal.pone.0148709
  47. Davis RL, Liang C, Sue CM. A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases. Neurology. 2016;86(21):2010-2014. https://doi.org/10.1212/wnl.0000000000002705

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.