The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ermakova N.A.

Institute of Advanced Training of the Federal Medical-Biological Agency, Department of Opthalmology, 30/1 Volokolamskoe highway, Moscow, Russian Federation, 123182

The role of inflammation in Age-related Macular Degeneration

Authors:

Ermakova N.A.

More about the authors

Journal: Russian Annals of Ophthalmology. 2018;134(6): 116‑123

Read: 1097 times


To cite this article:

Ermakova NA. The role of inflammation in Age-related Macular Degeneration. Russian Annals of Ophthalmology. 2018;134(6):116‑123. (In Russ.)
https://doi.org/10.17116/oftalma2018134061116

Recommended articles:
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Neuroprotective therapy for age-related macu­lar dege­neration. Russian Annals of Ophthalmology. 2024;(6):152-158
Effi­cacy of alpha-glutamyl-tryptophan in the treatment of chro­nic atro­phic gastritis: case series. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):121-128
Neuropeptide Y and inflammatory indi­ces in women after repeated cesa­rean section. Russian Bulletin of Obstetrician-Gynecologist. 2024;(6):35-40
Anti­fungal immu­nity in patients with chro­nic rhinosinusitis with nasal polyps. Russian Bulletin of Otorhinolaryngology. 2024;(6):40-45
Functional cyto­kine redu­ndancy in pregnancy. Russian Journal of Human Reproduction. 2024;(6):73-80

References:

  1. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298-300. https://doi.org/10.1093/geronj/11.3.298
  2. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428-435. https://doi.org/10.1038/nature07201
  3. Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog. Retin. Eye Res. 2009;28(5):348-368. https://doi.org/10.1016/j.preteyeres.2009.06.001
  4. Chen M, Muckersie E, Forrester JV, Xu H. Immune activation in Retinal Aging: A Gene Expression Study. Invest Ophthalmol Vis Sci. 2010;51(11):5888-5896. https://doi.org/10.1167/iovs.09-5103
  5. Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134(3):411-431. https://doi.org/10.1016/s1350-9462(00)00025-2
  6. Penfold PL, Killingsworth MC, Sarks SH. Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol. 1985;223(2):69-76. https://doi.org/10.1007/bf02150948
  7. McGwin G, Hall TA, Xie A, Owsley C. The relation between C reactive protein and age related macular degeneration in the Cardiovascular Health Study. Br J Ophthalmol. 2005;89(9):1166-1170. https://doi.org/10.1136/bjo.2005.067397
  8. Seddon JM, George S, Rosner B, Rifai N. Progression of age-related maculardegeneration: prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol. 2005;123(6):774-782. https://doi.org/10.1001/archopht.123.6.774
  9. Cousins SW, Espinosa-Heidmann DG, Csaky KG. Monocyte activation in patients with age-related macular degeneration: a biomarker of risk for choroidal neovascularization? Arch Ophthalmol. 2004;122(7):1013-1018. https://doi.org/10.1001/archopht.122.7.1013
  10. Klein R, Klein BE, Knudtson MD, et al. Systemic markers of inflammation, endothelial dysfunction, and age-related maculopathy. Am J Ophthalmol. 2005;140(1):35-44. https://doi.org/10.1016/j.ajo.2005.01.051
  11. Cherepanoff S, Mitchell P, Wang JJ, Gillies MC. Retinal autoantibody profile in early age-related macular degeneration: preliminary findings from the Blue Mountains Eye Study. Clin Experiment Ophthalmol. 2006;34(6):590-595. https://doi.org/10.1111/j.1442-9071.2006.01281.x
  12. Gu X, Meer SG, Miyagi M, et al. Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem. 2003;278(43):42027-42035. https://doi.org/10.1074/jbc.m305460200
  13. Anderson DH, Radeke MJ, Gallo NB, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res. 2010;29(2):95-112. https://doi.org/10.1016/j.preteyeres.2009.11.003
  14. Reynolds R, Hartnett ME, Atkinson JP, et al. Plasma complement components and activation fragments: associations with age-related macular degeneration genotypes and phenotypes. Invest Ophthalmol Vis Sci. 2009:50(12):5818-5827. https://doi.org/10.1167/iovs.09-3928
  15. Edwards AO. Genetics of age-related macular degeneration. Adv Exp Med Biol. 2008;613:211-219. https://doi.org/10.1007/978-0-387-74904-4_24
  16. Blaum B, Hannan J, Herbert A, et al. Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat Chem Biol. 2015;11:77-82. https://doi.org/10.1038/nchembio.1696
  17. Christopher B. Toomey, Lincoln V. Johnson, Catherine Bowes Rickman. Complement factor H in AMD: Bridging genetic associations and pathobiology, Progress in Retinal and Eye Research. 2018;32:38-57. https://doi.org/10.1016/j.preteyeres.2017.09.001
  18. Haines JL, Hauser MA, Schmidtetal S. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419-421. https://doi.org/10.1126/science.1110359
  19. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385-389. https://doi.org/10.1126/science.1109557
  20. Ormsby RJ, Ranganathan S, Tong JC, et al. Functional and structural implications of the complement factor H Y402H polymorphism associated with age-related macular degeneration. Investigative Ophthalmology and Visual Science. 2008;49(5):1763-1770. https://doi.org/10.1167/iovs.07-1297
  21. Lauer N, Mihlan M, Hartmann A, et al. Complement regulation at necrotic cell lesions is impaired by the age-related macular degeneration-associated factor-H His 402 risk variant. The Journal of Immunology. 2011;187(8):4374-4383. https://doi.org/10.4049/jimmunol.1002488
  22. Seddon JM, Reynolds R, Maller J, et al. Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Investigative Ophthalmology and Visual Science. 2009;50(5):2044-2053. https://doi.org/10.1167/iovs.08-3064
  23. Zipfel PF, Lauer N, and Skerka C. The role of complement in AMD. Advances in Experimental Medicine and Biology. 2010;703:9-24. https://doi.org/10.1007/978-1-4419-5635-4_2
  24. Nishiguchi KM, Yasuma TR, Tomida D, et al. C9- R95X polymorphism in patients with neovascular age-related macular degeneration. Investigative Ophthalmology & Visual Science. 2012;53(1):508-512. https://doi.org/10.1167/iovs.11-8425
  25. Maller JB, Fagerness JA, Reynolds RC, et al. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nature Genetics. 2007;39(10):1200-1201. https://doi.org/10.1038/ng2131
  26. Heurich M, Mart ınez-Barricarte R, Francis NJ, et al. Polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(21):8761-8766. https://doi.org/10.1073/pnas.1019338108
  27. Fett AL, Hermann MM. Muether PS, et al. Immunohistochemical localization of complement regulatory proteins in the human retina. Histol Histopathol. 2012;27(3):357-364.
  28. Nozaki M, Raisler BJ, Sakurai E, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(7):2328-2333. https://doi.org/10.1073/pnas.0408835103
  29. Bora NS, Kaliappan S, Jha P, et al. CD59, a complement regulatory protein, controls choroidal neovascularization in a mouse model of wet-type age-related macular degeneration. The Journal of Immunology. 2007;178(3):1783-1790. https://doi.org/10.4049/jimmunol.178.3.1783
  30. Tuo J, Smith BC, Bojanowski CM, et al. The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J. 2004;18:1297-1299. https://doi.org/10.1096/fj.04-1862fje
  31. Yang X, Hu J, Zhang J, Guan H. Polymorphisms in CFH, HTRA1 and CX3CR1 confer risk to exudative age-related macular degeneration in Han Chinese. Br J Ophthalmol. 2010;94(9):1211-1214. https://doi.org/10.1136/bjo.2009.165811
  32. Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunological Reviews. 2011;243(1):136-151. https://doi.org/10.1111/j.1600-065x.2011.01046.x
  33. Menu P, Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clinical & Experimental Immunology. 2011;166(1):1-15. https://doi.org/10.1111/j.1365-2249.2011.04440.x
  34. Doyle SL, Campbell M, Ozaki E, et al. NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nature Medicine. 2012;18(5):791-798. https://doi.org/10.1038/nm.2717
  35. Tarallo V, Hirano Y, Gelfand BD, et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell. 2012;149(4):847-859. https://doi.org/10.1016/j.cell.2012.03.036
  36. Kijlstra A, Tian Y, Kelly ER, Berendschot T.T.. Lutein: more than just a filter for blue light. Progress in Retinal and Eye Research. 2012;31(4):303-315. https://doi.org/10.1016/j.preteyeres.2012.03.002
  37. Tarallo V, Hirano Y, Gelfand BD, et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell. 2012;149(4):847–859. https://doi.org/10.1016/j.cell.2012.03.036
  38. Kijlstra A, Tian Y, Kelly ER, Berendschot TT. Lutein: more than just a filter for blue light. Progress in Retinal and Eye Research. 2012;31(4):303–315. https://doi.org/10.1016/j.preteyeres.2012.03.002
  39. Ermakova NA. Role of dietary supplementation in preventing progression of age-related macular degeneration. Oftal’mologiya. 2016;13(3):163-168. (In Russ.) https://doi.org/10.18008/1816-5095-2016-3-163-168

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.