The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sidorova I.S.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
N.V. Sklifosovskii Institute of Clinical Medicine

Nikitina N.A.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
N.V. Sklifosovskii Institute of Clinical Medicine

Unanyan A.L.

Sechenov First Moscow State Medical University

Ageev M.B.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
N.V. Sklifosovskii Institute of Clinical Medicine

Development of the human fetal brain and the influence of prenatal damaging factors on the main stages of neurogenesis

Authors:

Sidorova I.S., Nikitina N.A., Unanyan A.L., Ageev M.B.

More about the authors

Read: 31835 times


To cite this article:

Sidorova IS, Nikitina NA, Unanyan AL, Ageev MB. Development of the human fetal brain and the influence of prenatal damaging factors on the main stages of neurogenesis. Russian Bulletin of Obstetrician-Gynecologist. 2022;22(1):35‑44. (In Russ.)
https://doi.org/10.17116/rosakush20222201135

Recommended articles:
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Differentiated approach to cognitive reha­bilitation of patients after stroke. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6):5-11
Cognitive impairment in bili­nguals with neurological diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):26-29
Modern aspe­cts of chro­nic cere­bral ischemia pathogenetic therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):106-113
Non-invasive biomarkers for early diagnosis of Alzheimer’s disease in bodily fluids. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):8-16

References:

  1. Schepanski S, Buss C, Hanganu-Opatz IL, Arck PC. Prenatal immune and endocrine modulators of offspring’s brain development and cognitive functions later in life. Front Immunol. 2018;9:2186. https://doi.org/10.3389/fimmu.2018.02186
  2. Christian MA, Samms-Vaughan M, Lee M, Bressler J, Hessabi M, Grove ML, Shakespeare-Pellington S, Coore Desai C, Reece JA, Loveland KA, Boerwinkle E, Rahbar MH. Maternal exposures associated with autism spectrum disorder in Jamaican children. J Autism Dev Disord. 2018;48:8:2766-2778. https://doi.org/10.1007/s10803-018-3537-6
  3. Dimitrova N, Turpin H, Borghini A, Morisod Harari M, Urben S, Müller-Nix C. Perinatal stress moderates the link between early and later emotional skills in very preterm-born children: An 11-year-long longitudinal study. Early Hum Dev. 2018;121:8-14.  https://doi.org/10.1016/j.earlhumdev.2018.04.015
  4. Glynn LM, Howland MA, Sandman CA, Davis EP, Phelan M, Baram TZ, Stern HS. Prenatal maternal mood patterns predict child temperament and adolescent mental health. J Affect Disord. 2018;228:83-90.  https://doi.org/10.1016/j.jad.2017.11.065
  5. Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9:2:110-122.  https://doi.org/10.1038/nrn2252
  6. Kostović I, Judas M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr. 2010;99:8:1119-1127. https://doi.org/10.1111/j.1651-2227.2010.01811.x
  7. Petanjek Z, Judas M, Kostović I, Uylings HB. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex. 2008;18:4:915-929.  https://doi.org/10.1093/cercor/bhm124
  8. Kostović I, Judaš M. Embryonic and fetal development of the human cerebral cortex. Brain Mapping. 2015:167-175.  https://doi.org/10.1016/b978-0-12-397025-1.00193-7
  9. Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HB, Rakic P, Kostovic I. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA. 2011;108:32:13281-13286. https://doi.org/10.1073/pnas.1105108108
  10. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat. 2009;3:5.  https://doi.org/10.3389/neuro.05.005.2009
  11. Verney C, Monier A, Fallet-Bianco C, Gressens P. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat. 2010;217:4:436-448.  https://doi.org/10.1111/j.1469-7580.2010.01245.x
  12. Kostović I, Jovanov-Milošević N, Radoš M, Sedmak G, Benjak V, Kostović-Srzentić M, Vasung L, Čuljat M, Radoš M, Hüppi P, Judaš M. Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct. 2014;219:1:231-253.  https://doi.org/10.1007/s00429-012-0496-0
  13. Vasung L, Lepage C, Radoš M, Pletikos M, Goldman JS, Richiardi J, Raguž M, Fischi-Gómez E, Karama S, Huppi PS, Evans AC, Kostovic I. Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. Front Neuroanat. 2016;10:11.  https://doi.org/10.3389/fnana.2016.00011
  14. Kostović I, Kostović-Srzentić M, Benjak V, Jovanov-Milošević N, Radoš M. Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front Neurol. 2014;5:139.  https://doi.org/10.3389/fneur.2014.00139
  15. Zecevic N, Chen Y, Filipovic R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol. 2005;491:2:109-122.  https://doi.org/10.1002/cne.20714
  16. McConnell Brain Imaging Centre. The MRI study of normal brain development. https://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2
  17. Kostović I, Sedmak G, Judaš M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage. 2019;188:743-773.  https://doi.org/10.1016/j.neuroimage.2018.12.043
  18. Mitter C, Prayer D, Brugger PC, Weber M, Kasprian G. In vivo tractography of fetal association fibers. PLoS One. 2015;10:3:e0119536. https://doi.org/10.1371/journal.pone.0119536
  19. Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci. 2007;8:3:221-232.  https://doi.org/10.1038/nrn2054
  20. Rudolph MD, Graham AM, Feczko E, Miranda-Dominguez O, Rasmussen JM, Nardos R, Entringer S, Wadhwa PD, Buss C, Fair DA. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci. 2018;21:5:765-772.  https://doi.org/10.1038/s41593-018-0128-y
  21. Nielsen PR, Laursen TM, Mortensen PB. Association between parental hospital-treated infection and the risk of schizophrenia in adolescence and early adulthood. Schizophr Bull. 2013;39:1:230-237.  https://doi.org/10.1093/schbul/sbr149
  22. Patel S, Masi A, Dale RC, Whitehouse AJO, Pokorski I, Alvares GA, Hickie IB, Breen E, Guastella AJ. Social impairments in autism spectrum disorder are related to maternal immune history profile. Mol Psychiatry. 2018;23:8:1794-1797. https://doi.org/10.1038/mp.2017.201
  23. Buss C, Davis EP, Shahbaba B, Pruessner JC, Head K, Sandman CA. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc Natl Acad Sci USA. 2012;109:20:E1312-9.  https://doi.org/10.1073/pnas.1201295109
  24. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:4:691-705.  https://doi.org/10.1016/j.neuron.2012.03.026
  25. Bittle J, Stevens HE. The role of glucocorticoid, interleukin-1β, and antioxidants in prenatal stress effects on embryonic microglia. J Neuroinflammation. 2018;15:1:44.  https://doi.org/10.1186/s12974-018-1079-7
  26. Ślusarczyk J, Trojan E, Głombik K, Budziszewska B, Kubera M, Lasoń W, Popiołek-Barczyk K, Mika J, Wędzony K, Basta-Kaim A. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci. 2015;9:82.  https://doi.org/10.3389/fncel.2015.00082
  27. Davis EP, Head K, Buss C, Sandman CA. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood. Psychoneuroendocrinology. 2017;75:56-63.  https://doi.org/10.1016/j.psyneuen.2016.10.005
  28. Laloux C, Mairesse J, van Camp G, Giovine A, Branchi I, Bouret S, Morley-Fletcher S, Bergonzelli G, Malagodi M, Gradini R, Nicoletti F, Darnaudéry M, Maccari S. Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology. 2012;37:10:1646-1658. https://doi.org/10.1016/j.psyneuen.2012.02.010
  29. van den Hove DL, Leibold NK, Strackx E, Martinez-Claros M, Lesch KP, Steinbusch HW, Schruers KR, Prickaerts J. Prenatal stress and subsequent exposure to chronic mild stress in rats; interdependent effects on emotional behavior and the serotonergic system. Eur Neuropsychopharmacol. 2014;24:4:595-607.  https://doi.org/10.1016/j.euroneuro.2013.09.006
  30. Day JC, Koehl M, Deroche V, Le Moal M, Maccari S. Prenatal stress enhances stress- and corticotropin-releasing factor-induced stimulation of hippocampal acetylcholine release in adult rats. J Neurosci. 1998;18:5:1886-1892. https://doi.org/10.1523/JNEUROSCI.18-05-01886.1998
  31. Stelzer IA, Thiele K, Solano ME. Maternal microchimerism: lessons learned from murine models. J Reprod Immunol. 2015;108:12-25.  https://doi.org/10.1016/j.jri.2014.12.007
  32. Luhmann HJ, Kirischuk S, Sinning A, Kilb W. Early GABAergic circuitry in the cerebral cortex. Curr Opin Neurobiol. 2014;26:72-78.  https://doi.org/10.1016/j.conb.2013.12.014
  33. Kilb W, Kirischuk S, Luhmann HJ. Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits. 2013;7:139.  https://doi.org/10.3389/fncir.2013.00139
  34. Heng JI, Moonen G, Nguyen L. Neurotransmitters regulate cell migration in the telencephalon. Eur J Neurosci. 2007;26:3:537-546.  https://doi.org/10.1111/j.1460-9568.2007.05694.x
  35. Heck N, Kilb W, Reiprich P, Kubota H, Furukawa T, Fukuda A, Luhmann HJ. GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex. 2007;17:1:138-148.  https://doi.org/10.1093/cercor/bhj135
  36. Wang DD, Kriegstein AR. Defining the role of GABA in cortical development. J Physiol. 2009;587:Pt 9:1873-1879. https://doi.org/10.1113/jphysiol.2008.167635
  37. Manent JB, Jorquera I, Mazzucchelli I, Depaulis A, Perucca E, Ben-Ari Y, Represa A. Fetal exposure to GABA-acting antiepileptic drugs generates hippocampal and cortical dysplasias. Epilepsia. 2007;48:4:684-693.  https://doi.org/10.1111/j.1528-1167.2007.01056.x
  38. Brickley SG, Mody I. Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron. 2012;73:1:23-34.  https://doi.org/10.1016/j.neuron.2011.12.012
  39. Owens DF, Kriegstein AR. Developmental neurotransmitters? Neuron. 2002;36:6:989-991.  https://doi.org/10.1016/s0896-6273(02)01136-4
  40. Bagasrawala I, Memi F, V Radonjic N, Zecevic N. N-Methyl d-Aspartate receptor expression patterns in the human fetal cerebral cortex. Cereb Cortex. 2017;27:11:5041-5053. https://doi.org/10.1093/cercor/bhw289
  41. Avila A, Nguyen L, Rigo JM. Glycine receptors and brain development. Front Cell Neurosci. 2013;7:184.  https://doi.org/10.3389/fncel.2013.00184
  42. Sava BA, Chen R, Sun H, Luhmann HJ, Kilb W. Taurine activates GABAergic networks in the neocortex of immature mice. Front Cell Neurosci. 2014;8:26.  https://doi.org/10.3389/fncel.2014.00026
  43. Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren JQ, Bhide PG. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci. 2007;27:14:3813-3822. https://doi.org/10.1523/JNEUROSCI.5124-06.2007
  44. Dori A, Cohen J, Silverman WF, Pollack Y, Soreq H. Functional manipulations of acetylcholinesterase splice variants highlight alternative splicing contributions to murine neocortical development. Cereb Cortex. 2005;15:4:419-430.  https://doi.org/10.1093/cercor/bhh145
  45. Blanquie O, Kilb W, Sinning A, Luhmann HJ. Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex. Neuroscience. 2017;358:190-200.  https://doi.org/10.1016/j.neuroscience.2017.06.030
  46. Murase S, Owens DF, McKay RD. In the newborn hippocampus, neurotrophin-dependent survival requires spontaneous activity and integrin signaling. J Neurosci. 2011;31:21:7791-7800. https://doi.org/10.1523/JNEUROSCI.0202-11.2011
  47. Ikonomidou C, Turski L. Antiepileptic drugs and brain development. Epilepsy Res. 2010;88:1:11-22.  https://doi.org/10.1016/j.eplepsyres.2009.09.019
  48. Lebedeva J, Zakharov A, Ogievetsky E, Minlebaeva A, Kurbanov R, Gerasimova E, Sitdikova G, Khazipov R. Inhibition of cortical activity and apoptosis caused by ethanol in neonatal rats in vivo. Cereb Cortex. 2017;27:2:1068-1082. https://doi.org/10.1093/cercor/bhv293
  49. Lotfullina N, Khazipov R. Ethanol and the developing brain: inhibition of neuronal activity and neuroapoptosis. Neuroscientist. 2018;24:2:130-141.  https://doi.org/10.1177/1073858417712667
  50. Guizzetti M, Zhang X, Goeke C, Gavin DP. Glia and neurodevelopment: focus on fetal alcohol spectrum disorders. Front Pediatr. 2014;2:123.  https://doi.org/10.3389/fped.2014.00123
  51. Malk K, Metsäranta M, Vanhatalo S. Drug effects on endogenous brain activity in preterm babies. Brain Dev. 2014;36:2:116-123.  https://doi.org/10.1016/j.braindev.2013.01.009
  52. Creeley CE, Dikranian KT, Dissen GA, Back SA, Olney JW, Brambrink AM. Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology. 2014;120:3:626-638.  https://doi.org/10.1097/ALN.0000000000000037
  53. Lebedeva YA, Zakharova AV, Sitdikova GF, Zefirov AL, Khazipov RN. Ketamine-midazolam anesthesia induces total inhibition of cortical activity in the brain of newborn rats. Bull Exp Biol Med. 2016;161:1:15-19.  https://doi.org/10.1007/s10517-016-3334-1
  54. Zhou ZW, Shu Y, Li M, Guo X, Pac-Soo C, Maze M, Ma D. The glutaminergic, GABAergic, dopaminergic but not cholinergic neurons are susceptible to anaesthesia-induced cell death in the rat developing brain. Neuroscience. 2011;174:64-70.  https://doi.org/10.1016/j.neuroscience.2010.10.009
  55. Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I, Corbett JA, Bosnjak ZJ. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg. 2013;116:4:869-880.  https://doi.org/10.1213/ANE.0b013e3182860fc9
  56. Sohn HM, Kim HY, Park S, Han SH, Kim JH. Isoflurane decreases proliferation and differentiation, but none of the effects persist in human embryonic stem cell-derived neural progenitor cells. J Anesth. 2017;31:1:36-43.  https://doi.org/10.1007/s00540-016-2277-z
  57. Manent JB, Jorquera I, Franco V, Ben-Ari Y, Perucca E, Represa A. Antiepileptic drugs and brain maturation: fetal exposure to lamotrigine generates cortical malformations in rats. Epilepsy Res. 2008;78:2-3:131-139.  https://doi.org/10.1016/j.eplepsyres.2007.10.014
  58. Cao WS, Livesey JC, Halliwell RF. An evaluation of a human stem cell line to identify risk of developmental neurotoxicity with antiepileptic drugs. Toxicol In Vitro. 2015;29:3:592-599.  https://doi.org/10.1016/j.tiv.2015.01.010
  59. Roberts JA, Iyer KK, Finnigan S, Vanhatalo S, Breakspear M. Scale-free bursting in human cortex following hypoxia at birth. J Neurosci. 2014;34:19:6557-6572. https://doi.org/10.1523/JNEUROSCI.4701-13.2014
  60. Leon RL, Mir IN, Herrera CL, Sharma K, Spong CY, Twickler DM, Chalak LF. Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes. Pediatr Res. 2021 Apr 16.  https://doi.org/10.1038/s41390-021-01521-7
  61. Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res. 2019;86:2:157-164.  https://doi.org/10.1038/s41390-019-0405-9
  62. Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of neocortical development by early neuronal activity: physiology and pathophysiology. Front Cell Neurosci. 2017;11:379.  https://doi.org/10.3389/fncel.2017.00379

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.