Биологическая роль, терапевтический потенциал фитофлавоноидов, витамина D в лечении больных с миомой матки и другие перспективные фармакологические направления

Авторы:
  • С. Н. Буянова
    ГБУЗ МО «Московский областной научно-исследовательский институт акушерства и гинекологии», Москва, Россия
  • Н. А. Щукина
    ГБУЗ МО «Московский областной научно-исследовательский институт акушерства и гинекологии», Москва, Россия
  • Е. Л. Бабунашвили
    ГБУЗ МО «Московский областной научно-исследовательский институт акушерства и гинекологии», Москва, Россия
Журнал: Российский вестник акушера-гинеколога. 2018;18(5): 36-42
Просмотрено: 911 Скачано: 23
В обзоре результатов научных исследований, выполненных в последние годы, представлены новые подходы к лечению больных с миомой матки. Многочисленные исследования подтверждают существование четкого патофизиологического базиса для применения фитофлавоноидов при миоме матки, что является крайне перспективным. Учеными показана четкая взаимосвязь между сниженным уровнем витамина D в плазме крови и повышенным риском развития лейомиомы матки, а также его протективная роль при развитии данного заболевания. Ввиду колоссального значения фиброгенеза в патофизиологии лейомиомы матки продолжается поиск эффективного антифибротического препарата как средства дополнительной патогенетической терапии. Перспективны фармакологические исследования, направленные на разработку термочувствительных наноматериалов (наночастиц) в качестве депо для различных лекарственных препаратов. Точное, управляемое введение препарата в область очага поражения, в том числе при миоме матки, обеспечит его длительную задержку и будет препятствовать преждевременной инактивации, что позволит снизить кратность введения лекарственных средств. Новые подходы к фармакотерапии больных с миомой матки могут значительно повысить эффективность лечения и минимизировать число побочных эффектов.
Ключевые слова:
  • миома матки
  • фитофлавоноиды
  • куркумин
  • кальцитриол
  • апоптоз
  • фиброгенез
  • коллаген
  • наночастицы

КАК ЦИТИРОВАТЬ:

Буянова С.Н., Щукина Н.А., Бабунашвили Е.Л. Биологическая роль, терапевтический потенциал фитофлавоноидов, витамина D в лечении больных с миомой матки и другие перспективные фармакологические направления. Российский вестник акушера-гинеколога. 2018;18(5):36-42. https://doi.org/10.17116/rosakush20181805136

Список литературы:

  1. Dixon RA, Ferreira D. Molecules of interest: Genistein. Phytochemistry. 2002;60:3:205-211. https://doi.org/10.1016/S0031-9422(02)00116-4
  2. Shushan A, Ben-Bassat H, Mishani E, Laufer N, Klein BY, Rojansky N. Inhibition of leiomyoma cell proliferation in vitro by genistein and the protein tyrosine kinase inhibitor TKS050. Fertility and Sterility. 2007;87:1:127-135. https://doi.org/10.1016/j.fertnstert.2006.05.056
  3. Miyake A, Takeda T, Isobe A, Wakabayashi A, Nishimoto F, Morishige KI, Kimura T. Repressive effect of the phytoestrogen genistein on estradiol-induced uterine leiomyoma cell proliferation. Gynecological Endocrinology. 2009;25:6:403-409. https://doi.org/10.1080/09513590902730804
  4. Di X, Andrews DM, Tucker CJ, Yu L, Moore AB, Zheng X, Dixon D. A high concentration of genistein down-regulates activin A, Smad3 and other TGF-β pathway genes in human uterine leiomyoma cells. Experimental and Molecular Medicine. 2012;44:4:281-292. https://doi.org/10.3858/emm.2012.44.4.024
  5. Castro L, Gao X, Moore AB, Yu L, Di X, Kissling GE, Dixon D. High сoncentration of genistein Induces cell death in human uterine leiomyoma cells by autophagy. Expert Opin Environ Biol. 2016; 5:Suppl 1. https://doi.org/10.4172/2325-9655.S1-003
  6. Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry. 2006;67:17: 1849-1855. https://doi.org/10.1016/j.phytochem.2006.06.020
  7. Zhang D, Al-Hendy M, Richard-Davis G, Montgomery-Rice V, Sharan C, Rajaratnam V, Khurana A, Al-Hendy A. Green tea extract inhibits proliferation of uterine leiomyoma cells in vitro and in nude mice. American Journal Obstet Gynecol. 2010;202:3:289.e1-289.e9. https://doi.org/10.1016/j.ajog.2009.10.885
  8. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol-epigallocatechin-3-gallate. Cancer Research. 2006;5:2500-2505. https://doi.org/10.1158/0008-5472.CAN-05-3636
  9. Roshdy E, Rajaratnam V, Maitra S, Sabry M, Allah AS, Al-Handy A. Treatment of symptomatic uterine fibroids with green tea extract: A pilot randomized controlled clinical study. Int J Womens Health. 2013;5:1:477-486. https://doi.org/10.2147/IJWH.S41021
  10. Ammon HP, Wahl MA. Pharmacology of curcuma longa. Planta Med. 1991l57:1:1-7. https://doi.org/10.1055/s-2006-960004
  11. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003;23:1: 363-398.
  12. Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacology. 2005;70:5:700-713. https://doi.org/10.1016/j.bcp.2005.04.043
  13. Shishodia S, Singh T, Chaturvedi MM. Modulation of transcription factors by curcumin. Advances in Experimental Medicine and Biology. 2007;595:127-148. https://doi.org/10.1007/978-0-387-46401-5_4
  14. Malik M, Mendoza M, Payson M, Catherino WH. Curcumin, a nutritional supplement with antineoplastic activity, enhances leiomyoma cell apoptosis and decreases fibronectin expression. Fertil Steril. 2009;91:5 Suppl:2177-2184. https://doi.org/10.1016/j.fertnstert.2008.03.045
  15. Tsuiji K, Takeda T, Li B, Wakabayashi A, Kondo A, Kimura T, Yaegashi N. Inhibitory effect of curcumin on uterine leiomyoma cell proliferation. Gynecol Endocrinol. 2011;27:7:512-517. https://doi.org/10.3109/09513590.2010.507287
  16. Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action. Chemical Research in Toxicology. 2011;24:1: 6-19. https://doi.org/10.1021/tx100231n
  17. Li Y, Ding Z, Wu C. Mechanistic Study of the Inhibitory Effect of Kaempferol on Uterine Fibroids In Vitro. Medical Science Monitor. 2016;22:4803-4808. https://doi.org/10.12659/MSM.898127
  18. Islam MS, Segars JH, Castellucci M, Ciarmela P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacological Reports. 2017;69:1:57-70. https://doi.org/10.1016/j.pharep.2016.10.013
  19. Vieth R. The pharmacology of vitamin D. Vitamin D. 2011;1041-1066. https://doi.org/10.1016/B978-0-12-381978-9.10057-5
  20. Мальцев С.В., Рылова Н.В. Витамин D и иммунитет. Практическая медицина. 2015;1:86:114-120.
  21. Sabry M, Halder S, Ait Allah A, Roshdy E, Rajaratnam V, Al-Hendy. Serum vitamin D3 level inversely correlates with uterine fibroid volume in different ethnic groups: A cross-sectional observational study. Int J Womens Health. 2013;5:1:93-100. https://doi.org/10.2147/IJWH.S38800
  22. Baird DD, Hill MC, Schectman JM, nHollis BW. Vitamin D and the risk of uterine fibroids. Epidemiology. 2013;24:3:447-453. https://doi.org/10.1097/EDE.0b013e31828acca0
  23. Paffoni A, Somigliana E, Vigano P, Benaglia L, Cardellicchio L, Pagliardini L, Papaleo E, Candiani M, Fedele L. Vitamin D status in women with uterine leiomyomas. J Clin Endocrinol Metab. 2013; 98:8:E1374-1378. https://doi.org/10.1210/jc.2013-1777
  24. Ciebiera M, Wlodorczyk M, Slabuszewska-Jozwiak A, Nowicka G, Jakiel G. Original article: Influence of vitamin D and transforming growth factor β3 serum concentrations, obesity, and family history on the risk for uterine fibroids. Fertil Steril. 2016;3:1787-1792. https://doi.org/10.1016/j.fertnstert.2016.09.007
  25. Wise LA, Ruiz-Narvaez EA, Haddad SA, Rosenberg L, Palmer JR. Polymorphisms in vitamin D-related genes and risk of uterine leiomyomata. Fertil Steril. 2014;102:2:503-510. https://doi.org/10.1016/j.fertnstert.2014.04.037
  26. Blauer M, Rovio PH, Ylikomi T, Heinonen PK. Vitamin D inhibits myometrial and leiomyoma cell proliferation in vitro. Fertil Steril. 2009;91:5:1919-1925. https://doi.org/10.1016/j.fertnstert.2008.02.136
  27. Halder SK, Goodwin JS, Al-Hendy A. 1,25-Dihydroxyvitamin D3 reduces TGF-beta3-induced fibrosis-related gene expression in human uterine leiomyoma cells. J Clin Endocrinol Metab. 2011;96:4: E754-E762. https://doi.org/10.1210/jc.2010-2131
  28. Halder SK, Osteen KG, Al-Hendy A. 1,25-Dihydroxyvitamin D3 Reduces Extracellular Matrix-Associated Protein Expression in Human Uterine Fibroid Cells. Biol Reprod. 2013;89:6:150.
  29. Halder SK, Osteen KG, Al-Hendy A. Vitamin D3 inhibits expression and activities of matrix metalloproteinase-2 and -9 in human uterine fibroid cells. Hum Reprod. 2013;28:9:2407-2416. https://doi.org/10.1093/humrep/det265
  30. Sharan C, Halder SK, Thota C, Jaleel T, Nair S, Al-Handy A. Vitamin D inhibits proliferation of human uterine leiomyoma cells via catechol-O-methyltransferase. Fertil Steril. 2011;95:1:247-253. https://doi.org/10.1016/j.fertnstert.2010.07.1041
  31. Al-Hendy A, Diamond MP, El-Sohemy A, Halder SK. 1,25-dihydroxyvitamin D3 regulates expression of sex steroid receptors in human uterine fibroid cells. J Clin Endocrinol Metab. 2015;100:4:E572-E582. https://doi.org/10.1210/jc.2014-4011
  32. Al-Hendy A. Vitamin D3 Inhibits Wnt/β-Catenin and mTOR Signaling Pathways in Human Uterine Fibroid Cells. J Clin Endocrinol Metab. 2016;101:4:1542-1551. https://doi.org/10.1210/jc.2015-3555
  33. Halder SK, Sharan C, Al-Hendy A. 1,25-dihydroxyvitamin D3 treatment shrinks uterine leiomyoma tumors in the Eker rat model. Biol Reprod. 2012;86:4:116:1-10. https://doi.org/10.1095/biolreprod.111.098145
  34. Halder SK, Sharan C, Al-Hendy O, Al-Hendy A. Paricalcitol, a vitamin D receptor activator, inhibits tumor formation in a murine model of uterine fibroids. Reprod Sci. 2014;21:9:1108-1119. https://doi.org/10.1177/1933719114537721
  35. Савельев C.B., Буянова C.H., Бабунашвили Е.Л., Мгелиашвили М.В. Определение роли коллагена IV типа в патогенезе миомы матки. Российский вестник акушера-гинеколога. 2005;4:7-10.
  36. Gilpin D, Coleman S, Hall S, Houston A, Karrasch J, Jones N. Injectable Collagenase clostridium histolyticum: A new nonsurgical treatment for Dupuytren’s disease. Journal of Hand Surgery Am. 2010;35:12:2027-2038. https://doi.org/10.1016/j.jhsa.2010.08.007
  37. Thomas A, Bayat A. The emerging role of Clostridium histolyticum collagenase in the treatment of Dupuytren disease. Ther Clin Risk Manag. 2010;6:557-572. https://doi.org/10.2147/TCRM.S8591
  38. Gelbard M, Goldstein I, Hellstorm WJ, McMahon CG, Smith T, Tursi J, Jones N, Kaufman GJ, Carson C.C. Clinical efficacy, safety and tolerability of collagenase clostridium histolyticum for the treatment of peyronie disease in 2 large double-blind, randomized, placebo controlled phase 3 studies. J Urol. 2013;190:1:199-207. https://doi.org/10.1016/j.juro.2013.01.087
  39. Warwick D, Arandes-Renu JM, Pajardi G, Witthaut J, Hurst LC. Collagenase clostridium histolyticum: Emerging practice patterns and treatment advances. J Plast Surg Hand Surg. 2016;50:5:251-261. https://doi.org/10.3109/2000656X.2016.1159568
  40. Brunengraber L, Jayes F, Leppert P. Injectable Clostridium histolyticum collagenase as a potential treatment for uterine fibroids. Reprod Sci. 2014;21:12:1452-1459. https://doi.org/10.1177/1933719114553449
  41. Pines M, Vlodavsky I, Nagler A. Halofuginone: From veterinary use to human therapy. Drug Dev Res. 2000;50:3-4:371-378.
  42. Nagler A, Miao H-O, Aingorn H, Pines M, Genina O, Vlodavsky I. Inhibition of collagen synthesis, smooth muscle gell proliferation, and injury-induced intimal hyperplasia by halofuginone. Arter Thromb Vasc Biol. 1997;17:1:194-508.
  43. McGaha TL, Bona C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-β-mediated Smad3 activation in fibroblasts. J Invest Dermatol. 2002;118:3:461-470. https://doi.org/10.1046/j.0022-202x.2001.01690.x
  44. Nagler A, Firman N, Feferman R, Cotev S, Pines M, Shoshan S. Reduction in pulmonary fibrosis in vivo by halofuginone. Am J Respir Crit Care Med. 1996;154:4:1082-1086. https://doi.org/10.1164/ajrccm.154.4.8887611
  45. Xavier S, Piek E, Fujii M, Javelaud D, Flanders KC, Samuni AM, Reiss M, Yarkoni S, Sowers A, Mitchell JB, Roberts AB, Russo A. Amelioration of radiation-induced fibrosis. Inhibition of transforming growth factor-β signaling by halofuginone. J Biol Chem. 2004; 279:15:15167-15176. https://doi.org/10.1074/jbc.M309798200
  46. Grudzien MM, Low PS, Manning PC, Arredondo M, Belton RJ, Novak RA. The antifibrotic drug halofuginone inhibits proliferation and collagen production by human leiomyoma and myometrial smooth muscle cells. Fertil Steril. 2010;93:4:1290-1298. https://doi.org/10.1016/j.fertnstert.2008.11.018
  47. Taylor DK, Holthouser K, Segars JH, Leppert PC. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management. F1000. Research. 2015;4: F1000 Faculty Rev: 183. https://doi.org/10.12688/f1000research.6189.1
  48. Wright JC, Sekar M, Osdol WV, Su HC, Miksztal R. In book: Long acting injections and implants. Eds. Wright JC, Burgess DJ. New York: Springer. 2012;153-166. https://doi.org/10.1007/978-1-4614-0554-2
  49. Ali H, Kilic G, Vincent K, Motamedi M, Rytting E. Nanomedicine for uterine leiomyoma therapy. Ther Deliv. 2013;4:2:161-175. https://doi.org/10.4155/tde.12.144