The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Drapkina O.M.

National Medical Research Center for Therapy and Preventive Medicine;
Russian University of Medicine

Dadaeva V.A.

National Medical Research Center for Therapy and Preventive Medicine

Rozanov V.B.

National Medical Research Center for Therapy and Preventive Medicine

Metelskaya V.A.

National Medical Research Center for Therapy and Preventive Medicine;
Russian Medical Academy of Continuous Professional Education

Isaykina O.Yu.

National Medical Research Center for Therapy and Preventive Medicine

Efficiency of anthropometric surrogate indices for the metabolic syndrome and its components diagnosing in middle-aged Moscow men

Authors:

Drapkina O.M., Dadaeva V.A., Rozanov V.B., Metelskaya V.A., Isaykina O.Yu.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2025;28(5): 41‑48

Read: 636 times


To cite this article:

Drapkina OM, Dadaeva VA, Rozanov VB, Metelskaya VA, Isaykina OYu. Efficiency of anthropometric surrogate indices for the metabolic syndrome and its components diagnosing in middle-aged Moscow men. Russian Journal of Preventive Medicine. 2025;28(5):41‑48. (In Russ.)
https://doi.org/10.17116/profmed20252805141

Recommended articles:
Meta­bolic syndrome and anti­psychotic therapy of schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):165-170
Application of modern methods for acti­vation of brain functions in obese patients (literature review). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6):54-61
Rela­tionship between meta­bolic syndrome components and pathology of the red border of the lips and oral mucosa. Russian Journal of Operative Surgery and Clinical Anatomy. 2024;(4-2):58-63
Effe­ctiveness of using preventive and personalized technologies for obesity correction. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6-2):80-90
Premature birth and obesity: epidemiology, pathogenesis and obstetric tactics. Russian Bulletin of Obstetrician-Gynecologist. 2025;(2):29-34

References:

  1. Li Y, Gui J, Liu H, et al. Predicting metabolic syndrome by obesity- and lipid-related indices in midaged and elderly Chinese: a population based cross-sectional study. Frontiers in Endocrinology. 2023;14:1201132. https://doi.org/10.3389/fendo.2023.1201132
  2. Balanova YuA, Imaeva AE, Kutsenko VA, et al on behalf of the working group. Metabolic syndrome and its associations with sociodemographic and behavioral risk factors in the Russian population aged 25—64 years. Kardiovaskuljarnaja terapija i profilaktika. 2020;19(4):2600. (In Russ.). https://doi.org/10.15829/1728-8800-2020-2600
  3. Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Research and Clinical Practice. 2022;188:109924. https://doi.org/10.1016/j.diabres.2022.109924
  4. Gluvic Z, Zaric B, Resanovic I, et al. Link between Metabolic Syndrome and Insulin Resistance. Current Vascular Pharmacology. 2017;15(1):30-39.  https://doi.org/10.2174/1570161114666161007164510
  5. Głuszek S, Ciesla E, Głuszek-Osuch M, et al. Anthropometric indices and cut-off points in the diagnosis of metabolic disorders. PLoS One. 2020; 15(6):e0235121. https://doi.org/10.1371/journal.pone.0235121
  6. Gómez-Ambrosi J, Silva C, Catalán V, et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care. 2012;35(2):383-388.  https://doi.org/10.2337/dc11-1334
  7. Oh YH, Moon JH, Kim HJ, et al. Visceral-to-subcutaneous fat ratio as a predictor of the multiple metabolic risk factors for subjects with normal waist circumference in Korea. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2017;10:505-511.  https://doi.org/10.2147/DMSO.S150914
  8. Kyrou I, Panagiotakos DB, Kouli GM, et al. Lipid accumulation product in relation to 10-year cardiovascular disease incidence in Caucasian adults: The ATTICA study. Atherosclerosis. 2018;279:10-16.  https://doi.org/10.1016/j.atherosclerosis.2018.10.015
  9. Bijari M, Jangjoo S, Emami N, et al. The Accuracy of Visceral Adiposity Index for the Screening of Metabolic Syndrome: A Systematic Review and Meta-Analysis. International Journal of Endocrinology. 2021;2021:6684627. https://doi.org/10.1155/2021/6684627
  10. Khamseh ME, Malek M, Abbasi R, et al. Triglyceride Glucose Index and Related Parameters (Triglyceride Glucose-Body Mass Index and Triglyceride Glucose-Waist Circumference) Identify Nonalcoholic Fatty Liver and Liver Fibrosis in Individuals with Overweight/Obesity. Metabolic Syndrome and Related Disorders. 2021;19(3):167-173.  https://doi.org/10.1089/met.2020.0109
  11. Dadaeva VA, Eganyan RA, Rozanov VB, et al. Body composition, physical and mental health of overweight females. The Russian Journal of Preventive Medicine. 2022;25(9):60-69. (In Russ.). https://doi.org/10.17116/profmed20222509160
  12. Alexandri AL, Konstantinov VV, Deev AD, et al. Alcohol consumption and its link with cardiovascular mortality in 40—59 year old males (data of a 21.5 year prospective study). Terapevticheskiy arkhiv. 2003;75(12):8-11. (In Russ.).
  13. The IPAQ Group. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire. 2005. Accessed March 14,2025. https://sites.google.com/site/theipaq/scoringprotocol
  14. Dai H, Wang W, Chen R, et al. Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Nutrition and Metabolism. 2017;14:49.  https://doi.org/10.1186/s12986-017-0206-2
  15. Amato MC, Giordano C, Galia M, et al; AlkaMeSy Study Group. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920-922.  https://doi.org/10.2337/dc09-1825
  16. Li R, Li Q, Cui M, et al. Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese. Journal of Diabetes Investigation. 2018;9:411-418.  https://doi.org/10.1111/jdi.12708
  17. Raimi TH, Dele-Ojo BF, Dada SA, et al. Triglycerideglucose index and related parameters predicted metabolic syndrome in Nigerians. Metabolic Syndrome and Related Disorders. 2021;19(2):76-82.  https://doi.org/10.1089/met.2020.0092
  18. Du T, Yu X, Zhang J, et al. Lipid accumulation product and visceral adiposity index are effective markers for identifying the metabolically obese normal-weight phenotype. Acta Diabetologica. 2015;52(5):855-863.  https://doi.org/10.1007/s00592-015-0715-2
  19. Zhang XH, Zhang M, He J, et al. Comparison of Anthropometric and Atherogenic Indices as Screening Tools of Metabolic Syndrome in the Kazakh Adult Population in Xinjiang. International Journal of Environmental Research and Public Health. 2016;13(4):428.  https://doi.org/10.3390/ijerph13040428
  20. Głuszek S, Ciesla E, Głuszek-Osuch M, et al. Anthropometric indices and cut-off points in the diagnosis of metabolic disorders. PLoS One. 2020; 15(6):e0235121. https://doi.org/10.1371/journal.pone.0235121

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.