Веремеев А.В.

ФГБУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России

Киприна Е.С.

ФГБУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России

Бернс С.А.

ФГБУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России

Мелкумян А.Р.

ФГБУ «Национальный медицинский исследовательский центр колопроктологии имени А.Н. Рыжих» Минздрава России

Гильмутдинова И.Р.

ФГБУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России

Жданова О.В.

ФГБУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России

Драпкина О.М.

ФГБУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России;
ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России

Кишечник—мозг: взаимосвязи в норме и при патологии

Авторы:

Веремеев А.В., Киприна Е.С., Бернс С.А., Мелкумян А.Р., Гильмутдинова И.Р., Жданова О.В., Драпкина О.М.

Подробнее об авторах

Журнал: Профилактическая медицина. 2025;28(11): 106‑112

Прочитано: 117 раз


Как цитировать:

Веремеев А.В., Киприна Е.С., Бернс С.А., Мелкумян А.Р., Гильмутдинова И.Р., Жданова О.В., Драпкина О.М. Кишечник—мозг: взаимосвязи в норме и при патологии. Профилактическая медицина. 2025;28(11):106‑112.
Veremeev AV, Kiprina ES, Berns SA, Melkumyan AR, Gilmutdinova IR, Zhdanova OV, Drapkina OM. Gut—brain: interactions in health and pathology. Russian Journal of Preventive Medicine. 2025;28(11):106‑112. (In Russ.)
https://doi.org/10.17116/profmed202528111106

Рекомендуем статьи по данной теме:
Сов­ре­мен­ное сос­то­яние ал­го­ло­гии — ме­ди­ци­ны бо­ли — в Рос­сий­ской Фе­де­ра­ции. Жур­нал «Воп­ро­сы ней­ро­хи­рур­гии» име­ни Н.Н. Бур­ден­ко. 2024;(6):5-12
Мик­ро­би­ота ки­шеч­ни­ка при би­по­ляр­ном аф­фек­тив­ном расстройстве. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):28-33

Литература / References:

  1. Reutov VP, Sorokina EG. Causal Relationship between Physiological and Pathological Processes in the Brain and in the Gastrointestinal Tract: The Brain-Intestine Axis. Biophysics. 2022;67:972-986.  https://doi.org/10.1134/S0006350922060197
  2. Kato S. Role of serotonin 5-HT-receptors in intestinal inflammation. Biological and Pharmaceutical Bulletin. 2013;36(9):1406-1409. https://doi.org/10.1248/bpb.b13-00363
  3. Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms. 2022; 10(9):1838. https://doi.org/10.3390/microorganisms10091838
  4. Wilmes L, Collins JM, O’Riordan KJ, et al. Of bowels, brain and behavior: A role for the gut microbiota in psychiatric comorbidities in irritable bowel syndrome. Neurogastroenterology and Motility. 2021;33(3):e14095. https://doi.org/10.1111/nmo.14095
  5. Абдурасулова И.Н. Микробиота кишечника как ключевой участник нейроиммунных взаимодействий. Патогенез. 2022;20(3):8-12. 
  6. Sochocka M, Donskow-Łysoniewska K, Diniz BS, et al. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease-a Critical Review. Molecular Neurobiology. 2019;56(3):1841-1851. https://doi.org/10.1007/s12035-018-1188-4
  7. Angelucci F, Cechova K, Amlerova J, et al. Antibiotics, gut microbiota, and Alzheimer’s disease. Journal of Neuroinflammation. 2019;16(1):108.  https://doi.org/10.1186/s12974-019-1494-4
  8. Ticinesi A, Tana C, Nouvenne A. The intestinal microbiome and its relevance for functionality in older persons. Current Opinion in Clinical Nutrition and Metabolic Care. 2019;1:4-12.  https://doi.org/10.1097/MCO.0000000000000521
  9. Lombardi VC, De Meirleir KL, Subramanian K, et al. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. Journal of Nutritional Biochemistry. 2018;61:1-16.  https://doi.org/10.1016/j.jnutbio.2018.04.004
  10. Di Domenico M, Ballini A, Boccellino M, et al. The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine. Journal of Personalized Medicine. 2022;12(4):523.  https://doi.org/10.3390/jpm12040523
  11. Carabotti M, Scirocco A, Maselli MA, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology. 2015;28(2):203-209. 
  12. Mhanna A, Martini N, Hmaydoosh G, et al. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine (Baltimore). 2024;103(5):e37114. https://doi.org/10.1097/MD.0000000000037114
  13. Riordan KJ, Collins MK, Moloney GM, et al. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology. 2022;546:111572. https://doi.org/10.1016/j.mce.2022.111572
  14. Cavaliere G, Traina G. Neuroinflammation in the Brain and Role of Intestinal Microbiota: An Overview of the Players. Journal of Integrative Neuroscience. 2023;22(6):148.  https://doi.org/10.31083/j.jin2206148
  15. Lunin SM, Novoselova EG, Glushkova OV, et al. Cell Senescence and Central Regulators of Immune Response. International Journal of Molecular Sciences. 2022;23(8):4109. https://doi.org/10.3390/ijms23084109
  16. Harris HC, Edwards CA, Morrison DJ. Impact of Glycosidic Bond Configuration on Short Chain Fatty Acid Production from Model Fermentable Carbohydrates by the Human Gut Microbiota. Nutrients. 2017;9(1):26.  https://doi.org/10.3390/nu9010026
  17. Bishehsari F, Engen PA, Preite NZ, et al. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes (Basel). 2018;9(2):102.  https://doi.org/10.3390/genes9020102
  18. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology. 2017;1:29-41.  https://doi.org/10.1111/1462-2920.13589
  19. Wittekind DA, Kratzsch J, Mergl R, et al. Leptin, but not ghrelin, is associated with food addiction scores in a population-based subject sample. Frontiers in Psychiatry. 2023;14:1200021. https://doi.org/10.3389/fpsyt.2023.1200021
  20. Freire RH, Alvarez-Leite JI. Appetite control: hormones or diet strategies? Current Opinion in Clinical Nutrition and Metabolic Care. 2020;23(5):328-335.  https://doi.org/10.1097/MCO.0000000000000675
  21. Davis TR, Pierce MR, Novak SX, et al. Ghrelin octanoylation by ghrelin O-acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biology. 2021;11(7):210080. https://doi.org/10.1098/rsob.210080
  22. Rinninella E, Raoul P, Cintoni M, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7(1):14.  https://doi.org/10.3390/microorganisms7010014
  23. Dickerson F, Dilmore AH, Godoy-Vitorino F, et al. The Microbiome and Mental Health Across the Lifespan. Current Topics in Behavioral Neurosciences. 2023;61:119-140.  https://doi.org/10.1007/7854_2022_384
  24. Kesika P, Suganthy N, Sivamaruthi BS, et al. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sciences. 2021;264:118627. https://doi.org/10.1016/j.lfs.2020.118627
  25. Kim CS. Roles of Diet-Associated Gut Microbial Metabolites on Brain Health: Cell-to-Cell Interactions between Gut Bacteria and the Central Nervous System. Advances in Nutrition. 2024;15(1):100136. https://doi.org/10.1016/j.advnut.2023.10.008
  26. Pan Q, Li YQ, Guo K, et al. Elderly Patients with Mild Cognitive Impairment Exhibit Altered Gut Microbiota Profiles. Journal of Immunology Research. 2021;2021:5578958. https://doi.org/10.1155/2021/5578958
  27. Zou B, Li J, Ma RX, et al. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer’s Disease: A Systematic Review. Aging and Disease. 2023;14(3):964-1678. https://doi.org/10.14336/AD.2022.1127
  28. Zhang X, Tang B, Guo J. Parkinson’s disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Translational Neurodegeneration. 2023;12(1):59.  https://doi.org/10.1186/s40035-023-00392-8
  29. Jia X, Chen Q, Zhang Y, et al. Multidirectional associations between the gut microbiota and Parkinson’s disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway Frontiers in Cellular and Infection Microbiology. 2023;13:1296713. https://doi.org/10.3389/fcimb.2023.1296713
  30. Nguyen NM, Cho J, Lee C. Gut Microbiota and Alzheimer’s Disease: How to Study and Apply Their Relationship. International Journal of Molecular Sciences. 2023;24(4):4047. https://doi.org/10.3390/ijms24044047
  31. Chiantera V, Laganà AS, Basciani S, et al. A Critical Perspective on the Supplementation of Akkermansia muciniphila: Benefits and Harms. Life (Basel). 2023;13(6):1247. https://doi.org/10.3390/life13061247
  32. Lewandowska-Pietruszka Z, Figlerowicz M, Mazur-Melewska K. Microbiota in Autism Spectrum Disorder: A Systematic Review. International Journal of Molecular Sciences. 2023;24(23):16660. https://doi.org/10.3390/ijms242316660
  33. Mulder D, Aarts E, Arias Vasquez A, et al. A systematic review exploring the association between the human gut microbiota and brain connectivity in health and disease. Molecular Psychiatry. 2023;28(12):5037-5061. https://doi.org/10.1038/s41380-023-02146-4
  34. Manos J. The human microbiome in disease and pathology. APMIS. 2022; 130(12):690-705.  https://doi.org/10.1111/apm.13225
  35. Голубева Ю.А., Шептулина А.Ф., Драпкина О.М. Роль непереносимости гистамина в патогенезе синдрома раздраженного кишечника. Профилактическая медицина. 2023;6(6):130-135.  https://doi.org/10.17116/profmed202326061130
  36. Aldars-García L, Marin AC, Chaparro M, et al. The Interplay between Immune System and Microbiota in Inflammatory Bowel Disease: A Narrative Review. International Journal of Molecular Sciences. 2021;22(6):3076. https://doi.org/10.3390/ijms22063076
  37. Ristori MV, Quagliariello A, Reddel S, et al. Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutritional Interventions. Nutrients. 2019; 11(11):2812. https://doi.org/10.3390/nu11112812
  38. Peterson CT. Dysfunction of the Microbiota-Gut-brain Axis in Neurodegenerative Disease: The Promise of Therapeutic Modulation With Prebiotics, Medicinal Herbs, Probiotics, and Synbiotics. Journal of Evidence-Based Integrative Medicine. 2020;25:2515690X20957225. https://doi.org/10.1177/2515690X20957225
  39. Iannone LF, Preda A, Blottière HM, et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Review of Neurotherapeutics. 2019;19(10):1037-1050. https://doi.org/10.1080/14737175.2019.1638763
  40. Malesza IJ, Malesza M, Walkowiak J, et al. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells. 2021;10(11):3164. https://doi.org/10.3390/cells10113164
  41. Nandwana V, Nandwana NK, Das Y, et al. The Role of Microbiome in Brain Development and Neurodegenerative Diseases. Molecules. 2022;27(11):3402. https://doi.org/10.3390/molecules27113402
  42. Chen A, Park TY, Li KJ, et al. Antipsychotics and the microbiota. Current Opinion in Psychiatry. 2020;33(3):225-230.  https://doi.org/10.1097/YCO.0000000000000594
  43. Chudzik A, Orzyłowska A, Rola R, et al. Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules. 2021;11(7):1000. https://doi.org/10.3390/biom11071000
  44. Vendrik KEW, Ooijevaar RE, de Jong PRC, et al. Fecal Microbiota Transplantation in Neurological Disorders. Frontiers in Cellular and Infection Microbiology. 2020;10:98.  https://doi.org/10.3389/fcimb.2020.00098
  45. Czarnik W, Fularski P, Gajewska A, et al. The Role of Intestinal Microbiota and Diet as Modulating Factors in the Course of Alzheimer’s and Parkinson’s Diseases. Nutrients. 2024;16(2):308.  https://doi.org/10.3390/nu16020308
  46. Gong W, Guo P, Li Y, et al. Role of the Gut-brain Axis in the Shared Genetic Etiology Between Gastrointestinal Tract Diseases and Psychiatric Disorders: A Genome-Wide Pleiotropic Analysis. JAMA Psychiatry. 2023;80(4):360-370.  https://doi.org/10.1001/jamapsychiatry.2022.4974
  47. Chavira A, Belda-Ferre P, Kosciolek T, et al. The Microbiome and Its Potential for Pharmacology. Handbook of Experimental Pharmacology. 2019; 260:301-326.  https://doi.org/10.1007/164_2019_317
  48. Rinninella E, Cintoni M, Raoul P, et al. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients. 2019; 11(10):2393. https://doi.org/10.3390/nu11102393
  49. Liu X, Liu Y, Liu J, et al. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regeneration Research. 2024;19(4):833-845.  https://doi.org/10.4103/1673-5374.382223
  50. Loh JS, Mak WQ, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduction and Targeted Therapy. 2024;9(1):37.  https://doi.org/10.1038/s41392-024-01743-1
  51. Stolzer I, Scherer E, Süß P, et al. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. International Journal of Molecular Sciences. 2023;24(19):14925. https://doi.org/10.3390/ijms241914925
  52. Chidambaram SB, Essa MM, Rathipriya AG, et al. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacology and Therapeutics. 2022;231:107988. https://doi.org/10.1016/j.pharmthera.2021.107988
  53. Sharma A, Das P, Buschmann M, et al. The Future of Microbiome-Based Therapeutics in Clinical Applications. Clinical Pharmacology and Therapeutics. 2020;107(1):123-128.  https://doi.org/10.1002/cpt.1677
  54. Mohajeri MH, Brummer RJM, Rastall RA, et al. The role of the microbiome for human health: from basic science to clinical applications. European Journal of Nutrition. 2018;57(Suppl 1):1-14.  https://doi.org/10.1007/s00394-018-1703-4
  55. Ribeiro G, Ferri A, Clarke G, et al. Diet and the microbiota — gut—brain-axis: a primer for clinical nutrition. Current Opinion in Clinical Nutrition and Metabolic Care. 2022;25(6):443-450.  https://doi.org/10.1097/MCO.0000000000000874
  56. Brydges CR, Fiehn O, Mayberg HS, et al. Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with psychic anxiety and its functional magnetic resonance imaging-based neurologic signature. Scientific Reports. 2021;11(1):21011. https://doi.org/10.1038/s41598-021-99845-1
  57. Codagnone MG, Stanton C, O’Mahony SM, et al. Microbiota and Neurodevelopmental Trajectories: Role of Maternal and Early-Life Nutrition. Annals of Nutrition and Metabolism. 2019;74(Suppl 2):16-27.  https://doi.org/10.1159/000499144

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.