The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sergeeva V.A.

Kursk State Medical University;
Kursk Regional Children’s Hospital No. 2

Lipatova T.E.

Saratov State Medical University named after V.I. Razumovsky

Sarcopenia associated with COVID-19

Authors:

Sergeeva V.A., Lipatova T.E.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2022;25(11): 105‑112

Read: 4814 times


To cite this article:

Sergeeva VA, Lipatova TE. Sarcopenia associated with COVID-19. Russian Journal of Preventive Medicine. 2022;25(11):105‑112. (In Russ.)
https://doi.org/10.17116/profmed202225111105

Recommended articles:
Pathogenesis and pathological anatomy of chla­mydial infe­ctions. Russian Journal of Archive of Pathology. 2024;(5):68-74
Sarcopenia as a non-motor symptom of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(9):15-22
«Cytokine storm» as an immu­nopathologic reaction in pregnant women in the first trimester. Russian Bulletin of Obstetrician-Gynecologist. 2024;(5):19-24

References:

  1. Drew L. Lifting the burden of old age. Nature Outlook. The Future of Medicine. 2018;555(Iss.7695):15-17.  https://doi.org/10.1038/d41586-018-02479-z
  2. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al.; European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Ageing. 2010;39(4):412-423.  https://doi.org/10.1093/ageing/afq034
  3. Cruz-Jentoft AJ, Bahat G, Bauer J, et al.; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing. 2019;48(1):16-31.  https://doi.org/10.1093/ageing/afy169
  4. Aryana IGPS, Setiati S, Rini SS. Molecular Mechanism of Acute Sarcopenia in Elderly Patient with COVID-19. Acta Medica Indonesiana. 2021; 53(4):481-492. 
  5. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. Journal of Biological Regulators and Homeostatic Agents. 2020;34(2):327-331.  https://doi.org/10.23812/CONTI-E
  6. Kim JW, Yoon JS, Kim EJ, et al. Prognostic Implication of Baseline Sarcopenia for Length of Hospital Stay and Survival in Patients with Coronavirus Disease 2019. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2021;76(8):110-116.  https://doi.org/10.1093/gerona/glab085
  7. Sousa AS, Guerra RS, Fonseca I, et al. Sarcopenia among hospitalized patients — A cross-sectional study. Clinical Nutrition. 2015;34(6):1239-1244. https://doi.org/10.1016/j.clnu.2014.12.015
  8. Welch C, Greig C, Masud T, et al. COVID-19 and Acute Sarcopenia. Aging and Disease. 2020;11(6):1345-1351. https://doi.org/10.14336/AD.2020.1014
  9. Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post-COVID-19 acute sarcopenia: physiopathology and management. Aging Clinical and Experimental Research. 2021;33:2887-2898. https://doi.org/10.1007/s40520-021-01942-8
  10. Solverson KJ, Grant C, Doig CJ. Assessment and predictors of physical functioning post-hospital discharge in survivors of critical illness. Annals of Intensive Care. 2016;6(1):92.  https://doi.org/10.1186/s13613-016-0187-8
  11. Lexell J, Henriksson-Larsen K, Winblad B, et al. Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle and Nerve. 1983;6(8):588-595.  https://doi.org/10.1002/mus.880060809
  12. Korhonen MT, Cristea A, Alén M, et al. Aging, muscle fiber type, and contractile function in sprint-trained athletes. Journal of Applied Physiology. 2006;101(3):906-917.  https://doi.org/10.1152/japplphysiol.00299.2006
  13. Di Felice V, Coletti D, Seelaender M. Editorial: Myokines, Adipokines, Cytokines in Muscle Pathophysiology. Frontiers in Physiology. 2020;11: 592856. https://doi.org/10.3389/fphys.2020.592856
  14. Picca A, Calvani R. Molecular Mechanism and Pathogenesis of Sarcopenia: An Overview. International Journal of Molecular Sciences. 2021;22(6):3032. https://doi.org/10.3390/ijms22063032
  15. Domingues R, Lippi A, Setz C, et al. SARS-CoV-2, immunosenescence and inflammaging: partners in the COVID-19 crime [published online ahead of print, 2020 Sep 29]. Aging. 2020;12(18):18778-18789. https://doi.org/10.18632/aging.103989
  16. Bektas A, Schurman SH, Sen R, et al. T cell immunosenescence and inflammation in aging. Journal of Leukocyte Biology. 2017;102(4):977-988.  https://doi.org/10.1189/jlb.3RI0716-335R
  17. Marzetti E, Calvani R, Cesari M, et al. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. International Journal of Biochemistry and Cell Biology. 2013;45(10):2288-2301. https://doi.org/10.1016/j.biocel.2013.06.024
  18. Kirwan R, McCullough D, Butler T, et al. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. Geroscience. 2020;42(6):1547-1578. https://doi.org/10.1007/s11357-020-00272-3
  19. Sergeeva VA. Respiratory pathophysiology in obesity. Pulmonologia. 2021; 31(6):808-815. (In Russ.). https://doi.org/10.18093/0869-0189-2021-31-6-808-815
  20. Okazaki T, Ebihara S, Mori T, et al. Association between sarcopenia and pneumonia in older people. Geriatrics and Gerontology International. 2020; 20:7-13.  https://doi.org/10.1111/ggi.13839
  21. Supriya R, Singh KP, Gao Y, et al. Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. Biology. 2021;11(1):51.  https://doi.org/10.3390/biology11010051
  22. Norman K, Haß U, Pirlich M. Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients. 2021;13(8):2764. https://doi.org/10.3390/nu13082764
  23. Bauer JM, Sieber CC. Sarcopenia and frailty: a clinician’s controversial point of view. Experimental Gerontology. 2008;43(7):674-678.  https://doi.org/10.1016/j.exger.2008.03.007
  24. Conzade R, Koenig W, Heier M, et al. Prevalence and Predictors of Subclinical Micronutrient Deficiency in German Older Adults: Results from the Population-Based KORA-Age Study. Nutrients. 2017;9:1276. https://doi.org/10.3390/nu9121276
  25. Ceglia L. Vitamin D and its role in skeletal muscle. Current Opinion in Clinical Nutrition and Metabolic Care. 2009;12(6):628-633.  https://doi.org/10.1097/MCO.0b013e328331c707
  26. Kostoglou-Athanassiou I, Pantazi E, Kontogiannis S, et al. Vitamin D in acutely ill patients. Journal of International Medical Research. 2018;46(10): 4246-4257. https://doi.org/10.1177/0300060518792783
  27. Dos Santos PK, Sigoli E, Bragança LJ, et al. The Musculoskeletal Involvement after Mild to Moderate COVID-19 Infection. Frontiers in Physiology. 2022;13:813924. https://doi.org/10.3389/fphys.2022.813924
  28. Lang CH, Frost RA, Nairn AC, et al. TNF-alpha impairs heart and skeletal muscle protein synthesis by altering translation initiation. American Journal of Physiology-Endocrinology and Metabolism. 2002;282(2):336-347.  https://doi.org/10.1152/ajpendo.00366.2001
  29. Foletta VC, White LJ, Larsen AE, et al. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Archiv. 2011; 461(3):325-335.  https://doi.org/10.1007/s00424-010-0919-9
  30. Moreira AC, Mesquita G, Gomes MS. Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions. Microorganisms. 2020;8(4):589.  https://doi.org/10.3390/microorganisms8040589
  31. Ferrandi PJ, Alway SE, Mohamed JS. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. Journal of Applied Physiology. 2020;129(4):864-867.  https://doi.org/10.1152/japplphysiol.00321.2020
  32. Disser NP, De Micheli AJ, Schonk MM, et al. Musculoskeletal Consequences of COVID-19. The Journal of Bone and Joint Surgery. American Volume. 2020;102(14):1197-1204. https://doi.org/10.2106/JBJS.20.00847
  33. Klok FA, Kruip MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thrombosis Research. 2020; 191:148-150.  https://doi.org/10.1016/j.thromres.2020.04.041
  34. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. 2020;383(2):120-128.  https://doi.org/10.1056/NEJMoa2015432
  35. Campos AM, Moura FA, Santos SN, et al.; Brasilia Study on Healthy Aging and Brasilia Heart Study. Sarcopenia, but not excess weight or increased caloric intake, is associated with coronary subclinical atherosclerosis in the very elderly. Atherosclerosis. 2017;258:138-144.  https://doi.org/10.1016/j.atherosclerosis.2017.01.005
  36. Dos Santos MR, Saitoh M, Ebner N, et al. Sarcopenia and Endothelial Function in Patients with Chronic Heart Failure: Results From the Studies Investigating Comorbidities Aggravating Heart Failure (SICA-HF). Journal of the American Medical Directors Association. 2017;18(3):240-245.  https://doi.org/10.1016/j.jamda.2016.09.006
  37. Yamanashi H, Kulkarni B, Edwards T, et al. Association between atherosclerosis and handgrip strength in non-hypertensive populations in India and Japan. Geriatrics and Gerontology International. 2018;18(7):1071-1078. https://doi.org/10.1111/ggi.13312
  38. Torii Y, Kusunose K, Zheng R, et al. Association between Sarcopenia/Lower Muscle Mass and Short-Term Regression of Deep Vein Thrombosis Using Direct Oral Anticoagulants. International Heart Journal. 2020;61(4):787-794.  https://doi.org/10.1536/ihj.20-032
  39. Seixas MLGA, Mitre LP, Shams S, et al. Unraveling Muscle Impairment Associated with COVID-19 and the Role of 3D Culture in Its Investigation. Frontiers in Nutrition. 2022;9:825629. https://doi.org/10.3389/fnut.2022.825629
  40. Hoppeler H, Kleinert E, Schlegel C, et al. Morphological adaptations of human skeletal muscle to chronic hypoxia. International Journal of Sports Medicine. 1990;11(suppl 1):3-9.  https://doi.org/10.1055/s-2007-1024846
  41. Mayer KP, Thompson Bastin ML, Montgomery-Yates AA, et al. Acute skeletal muscle wasting and dysfunction predict physical disability at hospital discharge in patients with critical illness. Critical Care. 2020;24(1):637.  https://doi.org/10.1186/s13054-020-03355-x
  42. Martone AM, Bianchi L, Abete P, et al. The incidence of sarcopenia among hospitalized older patients: results from the Glisten study. Journal of Cachexia Sarcopenia and Muscle. 2017;8(6):907-914.  https://doi.org/10.1002/jcsm.12224
  43. Sergeeva VA, Lipatova TE. Lifestyle Changes in Medical Students during the COVID-19 Pandemic. Kachestvennaya klinicheskaya praktika. 2022;(1): 64-71. (In Russ.). https://doi.org/10.37489/2588-0519-2022-1-64-71
  44. Krogh-Madsen R, Thyfault JP, Broholm C, et al. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity [published correction appears in J Appl Physiol. 2010 May;108(5):1034]. Journal of Applied Physiology. 2010;108(5):1034-1040. https://doi.org/10.1152/japplphysiol.00977.2009
  45. Campbell M, Varley-Campbell J, Fulford J, et al. Effect of Immobilisation on Neuromuscular Function in Vivo in Humans: A Systematic Review [published correction appears in Sports Med. 2019 Apr 4;]. Sports Medicine. 2019;49(6):931-950.  https://doi.org/10.1007/s40279-019-01088-8
  46. Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. Journal of Neurological Sciences. 2020;413: 116832. https://doi.org/10.1016/j.jns.2020.116832
  47. Rudroff T, Fietsam AC, Deters JR, et al. Post-COVID-19 Fatigue: Potential Contributing Factors. Brain Sciences. 2020;10(12):1012. https://doi.org/10.3390/brainsci10121012
  48. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with Covid-19. New England Journal of Medicine. 2021;384(8):693-704.  https://doi.org/10.1056/NEJMoa2021436
  49. Cantu N, Vyavahare S, Kumar S, et al. Synergistic Effects of Multiple Factors Involved in COVID-19-dependent Muscle Loss. Aging and Disease. 2022;13(2):344-352. 
  50. Morrison-Nozik A, Anand P, Zhu H, et al. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(49):6780-6789. https://doi.org/10.1073/pnas.1512968112
  51. Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704-1708. https://doi.org/10.1126/science.1065874
  52. Paddon-Jones D, Sheffield-Moore M, Cree MG, et al. Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. The Journal of Clinical Endocrinology and Metabolism. 2006;91(12):4836-4841. https://doi.org/10.1210/jc.2006-0651

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.