The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sergeyev O.V.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Volchkova E.V.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Darvina O.V.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Belaia O.F.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

New viral infections — new challenges

Authors:

Sergeyev O.V., Volchkova E.V., Darvina O.V., Belaia O.F.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2024;27(7): 114‑119

Read: 983 times


To cite this article:

Sergeyev OV, Volchkova EV, Darvina OV, Belaia OF. New viral infections — new challenges. Russian Journal of Preventive Medicine. 2024;27(7):114‑119. (In Russ.)
https://doi.org/10.17116/profmed202427071114

Recommended articles:
Surgical treatment of intramedullary spinal cord tumors: a systematic review. Burdenko's Journal of Neurosurgery. 2025;(1):103-108
Epidemiology of M. geni­talium infe­ction. What is known?. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(2):143-152
Therapeutic pote­ntial of quercetin and its deri­vatives against COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5):44-50
Infe­rior alveolar nerve injury and sensory reha­bilitation of the lower lip. Plastic Surgery and Aesthetic Medi­cine. 2025;(3):91-99
The exoskeleton of the hand in modern habi­litation and reha­bilitation (analytical review). Russian Journal of Operative Surgery and Clinical Anatomy. 2025;(3):53-61

References:

  1. Allen T, Murray KA, Zambrana-Torrelio C, et al. Global hotspots and correlates of emerging zoonotic diseases. Nature Communications. 2017;8:1124. https://doi.org/10.1038/s41467-017-00923-8
  2. Jones BA, Grace D, Kock R, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:8399-8404. https://doi.org/10.1073/pnas.1208059110
  3. Tian J, Sun J, Li D, et al. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Reports. 2022;39:1-21.  https://doi.org/10.1016/j.celrep.2022.110969
  4. Goldspink LK, Edson DW, Vidgen ME, et al. Natural Hendra virus infection in flying-foxes — tissue tropism and risk factors. PloS One. 2015;10(6): e0128835. https://doi.org/10.1371/journal.pone.0128835
  5. Reynes JM, Counor D, Ong S, et al. Nipah virus in Lyle’s flying foxes, Cambodia. Emerging Infectious Diseases. 2005;11(7):1042-1047. https://doi.org/10.3201/eid1107.041350
  6. Sendow I, Ratnawati A, Taylor T, et al. Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia. PLoS One. 2013;8(7):e69544. https://doi.org/10.1371/journal.pone.0069544
  7. Rahman SA, Hassan L, Epstein JH, et al. Risk factors for Nipah virus infection among pteropid bats, peninsular Malaysia. Emerging Infectious Diseases. 2013;19:51-60.  https://doi.org/10.3201/eid1901.120221
  8. Epstein JH, Anthony SJ, Islam A, et al. Nipah virus dynamics in bats and implications for spillover to humans. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(46):29190-29201. https://doi.org/10.1073/pnas.2000429117
  9. O’Sullivan JD, Allworth AM, Paterson DL, et al. Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet (London, England). 1997;349:93-95.  https://doi.org/10.1016/s0140-6736(96)06162-4
  10. Barclay AJ, Paton DJ. Hendra (equine morbillivirus). Veterinary Journal (London, England: 1997). 2000;160(3):169-176.  https://doi.org/10.1053/tvjl.2000.0508
  11. Playford EG, McCall B, Smith G, et al. Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. Emerging Infectious Diseases. 2010;16(2):219-223.  https://doi.org/10.3201/eid1602.090552
  12. Queensland Gov. Summary of Hendra virus incidents in horses. Queensland Government. 2019. Accessed May 13, 2024. https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary
  13. Middleton D. Hendra virus. The Veterinary clinics of North America. Equine practice. 2014;30(3):579-589.  https://doi.org/10.1016/j.cveq.2014.08.004
  14. Taylor C, Playford EG, McBride WJ, et al. No evidence of prolonged Hendra virus shedding by 2 patients, Australia. Emerging Infectious Diseases. 2012;18(12):2025-2027. https://doi.org/10.3201/eid1812.120722
  15. Wong KT, Tan CT. Clinical and pathological manifestations of human henipavirus infection. Current Topics in Microbiology and Immunology. 2012; 359:95-104.  https://doi.org/10.1007/82_2012_205
  16. Wang J, Anderson DE, Halpin K, et al. A new Hendra virus genotype found in Australian flying foxes. Virology Journal. 2021;18(1):197-209.  https://doi.org/10.1186/s12985-021-01652-7
  17. Annand EJ, Horsburgh BA, Xu K, et al. Novel Hendra Virus Variant Detected by Sentinel Surveillance of Horses in Australia. Emerging Infectious Diseases. 2022;28(3):693-704.  https://doi.org/10.3201/eid2803.211245
  18. Peel AJ, Yinda CK, Annand EJ, et al. Novel Hendra Virus Variant Circulating in Black Flying Foxes and Grey-Headed Flying Foxes, Australia. Emerging Infectious Diseases. 2022;28(5):1043-1047. https://doi.org/10.3201/eid2805.212338
  19. Westbury HA, Hooper PT, Brouwer SL, Sellecket PW. Susceptibility of cats to equine morbillivirus. Australian Veterinary Journal. 1996;74(2):132-134.  https://doi.org/10.1111/j.1751-0813.1996.tb14813.x
  20. Hooper PT, Westbury HA, Russell GM. The lesions of experimental equine morbillivirus disease in cats and guinea pigs. Veterinary Pathology. 1997; 34(4):323-329.  https://doi.org/10.1177/030098589703400408
  21. Guillaume V, Wong KT, Looi RY, et al. Acute Hendra virus infection: analysis of the pathogenesis and passive antibody protection in the hamster model. Virology. 2009;387(2):459-465.  https://doi.org/10.1016/j.virol.2009.03.001
  22. Li M, Embury-Hyatt C, Weingartl HM. Experimental inoculation study indicates swine as a potential host for Hendra virus. Veterinary Research. 2010;41:33.  https://doi.org/10.1051/vetres/2010005
  23. Dups J, Middleton D, Yamada M, et al. A new model for Hendra virus encephalitis in the mouse. PLoS One. 2012;7(7):e40308. https://doi.org/10.1371/journal.pone.0040308
  24. Chua KB, Bellini WJ, Rota PA, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science (New York, N.Y.). 2000;288(5470):1432-1435. https://doi.org/10.1126/science.288.5470.1432
  25. Chadha MS, Comer JA, Lowe L, et al. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerging Infectious Diseases. 2006;12(2):235-240.  https://doi.org/10.3201/eid1202.051247
  26. Ching PK, de los Reyes VC, Sucaldito MN, et al. Outbreak of henipavirus infection, Philippines, 2014. Emerging Infectious Diseases. 2015;21(2):328-331.  https://doi.org/10.3201/eid2102.141433
  27. Arunkumar G, Chandni R, Mourya DT, et al. Outbreak investigation of Nipah virus disease in Kerala, India, 2018. The Journal of Infectious Diseases. 2019;219:1867-1878. https://doi.org/10.1093/infdis/jiy612
  28. Rockx B, Winegar R, Freiberg AN. Recent progress in henipavirus research: molecular biology, genetic diversity, animal models. Antiviral Research. 2012;95(2):135-149.  https://doi.org/10.1016/j.antiviral.2012.05.008
  29. Ang BSP, Lim TCC, Wang L. Nipah Virus Infection. Journal of Clinical Microbiology. 2018;56:e01875-e17.  https://doi.org/10.1128/JCM.01875-17
  30. Pelissier R, Iampietro M, Horvat B. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000Research. 2019;8:1763. https://doi.org/10.12688/f1000research.19975.1
  31. Wong KT, Shieh WJ, Kumar S, et al. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. The American Journal of Pathology. 2002;161(6):2153-2167. https://doi.org/10.1016/S0002-9440(10)64493-8
  32. Goh KJ, Tan CT, Chew NK, et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. The New England Journal of Medicine. 2000;342(17):1229-1233. https://doi.org/10.1056/NEJM200004273421701
  33. Hossain MJ, Gurley ES, Montgomery JM, et al. Clinical presentation of Nipah virus infection in Bangladesh. Clinical Infectious Diseases. 2008;46(7): 977-984.  https://doi.org/10.1086/529147
  34. Nikolay B, Salje H, Hossain MJ, et al. Transmission of Nipah virus — 14 years of investigations in Bangladesh. The New England Journal of Medicine. 2019;380:1804-1814. https://doi.org/10.1056/NEJMoa1805376
  35. Gurley ES, Spiropoulou CF, de Wit E. Twenty years of Nipah virus research: where do we go from here? The Journal of Infectious Diseases. 2020;221: S359-362.  https://doi.org/10.1093/infdis/jiaa078
  36. World Health Organization. List of Blueprint Priority Diseases. Accessed 4 March 2020. Accessed May 13, 2024. https://www.who.int/blueprint/prioritydiseases/en/
  37. Bossart KN, Zhu Z, Middleton D, et al. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathogens. 2009;5:e1000642. https://doi.org/10.1371/journal.ppat.1000642
  38. Rockx B, Brining D, Kramer J, et al. Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. Journal of Virology. 2011;85:7658-7671. https://doi.org/10.1128/jvi.00473-11
  39. Middleton DJ, Westbury HA, Morrissy CJ, et al. Experimental Nipah virus infection in pigs and cats. Journal of Comparative Pathology. 2002;126: 124-136.  https://doi.org/10.1053/jcpa.2001.0532
  40. Geisbert TW, Daddario-DiCaprio KM, Hickey AC, et al. Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS One. 2010;5:e10690. https://doi.org/10.1371/journal.pone.0010690
  41. Mire CE, Satterfield BA, Geisbert JB, et al. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: implications for antibody therapy. Scientific Reports. 2016;6:30916. https://doi.org/10.1038/srep30916
  42. Dhondt KP, Mathieu C, Chalons M, et al. Type I interferon signaling protects mice from lethal henipavirus infection. Journal of Infectious Diseases. 2013;207:142-151.  https://doi.org/10.1093/infdis/jis653
  43. Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535-538.  https://doi.org/10.1038/nature12711
  44. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9
  45. Widagdo W, Sooksawasdi Na Ayudhya S, Hundie GB, Haagmans BL. Host determinants of MERS-CoV transmission and pathogenesis. Viruses. 2019;11:280.  https://doi.org/10.3390/v11030280
  46. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology. 2019;17:181-192.  https://doi.org/10.1038/s41579-018-0118-9
  47. Haagmans BL, Al Dhahiry SH, Reusken CB, et al. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. The Lancet. Infectious diseases. 2014;14:140-145.  https://doi.org/10.1016/s1473-3099(13)70690-x
  48. Sabir JS, Lam TT, Ahmed MM, et al. Cocirculation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science. 2016;351:81-84.  https://doi.org/10.1126/science.aac8608
  49. Zhou H, Chen X, Hu T, et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology: CB. 2020;30:3896. https://doi.org/10.1016/j.cub.2020.09.030
  50. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology. 2017;39(5):529-539.  https://doi.org/10.1007/s00281-017-0629-x
  51. Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nature Reviews Microbiology. 2023;21:162-177.  https://doi.org/10.1038/s41579-022-00841-7
  52. Sanyaolu A, Okorie C, Marinkovic A, et al. Comorbidity and its Impact on Patients with COVID-19. SN Comprehensive Clinical Medicine. 2020;2(8): 1069-1076. https://doi.org/10.1007/s42399-020-00363-4
  53. Abdulamir AS, Hafidh RR. The Possible Immunological Pathways for the Variable Immunopathogenesis of COVID—19 Infections among Healthy Adults, Elderly and Children. Electronic Journal of General Medicine. 2020; 17:em202. https://doi.org/10.29333/ejgm/7850
  54. Shah SK, Munoz AC. Multisystem Inflammatory Syndrome in Children in COVID-19 Pandemic. Indian Journal of Pediatrics. 2020;87(9):671-673.  https://doi.org/10.1007/s12098-020-03440-7
  55. Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death and Differentiation. 2020;27(5):1451-1454. https://doi.org/10.1038/s41418-020-0530-3
  56. Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses. 2022;14:936.  https://doi.org/10.3390/v14050936
  57. Minkoff JM, tenOever B. Innate immune evasion strategies of SARS-CoV-2. Nature Reviews Microbiology. 2023;21(3):178-194.  https://doi.org/10.1038/s41579-022-00839-1
  58. Keusch GT, Amuasi JH, Anderson DE, et al. Pandemic origins and a One Health approach to preparedness and prevention: Solutions based on SARS-CoV-2 and other RNA viruses. Proceedings of the National Academy of Sciences of the United States of America. 2022;119(42):e2202871119. https://doi.org/10.1073/pnas.2202871119
  59. Dixon DCK, Ratan C, Nair B, et al. RNA Sensors as a Mechanism of Innate Immune Evasion among SARSCoV2, HIV and Nipah Viruses. Current Protein Peptide Science. 2021;22:273-289.  https://doi.org/10.2174/1389203722666210322142725
  60. Gallicano GI, Casey JL, Fu J, Mahapatra S. Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility. Gene Therapy. 2020;12:1-8.  https://doi.org/10.1038/s41434-020-00210-0

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.