The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kiselev A.R.

National Medical Research Centre of Therapy and Preventive Medicine

Schwartz E.N.

National Medical Research Center for Therapy and Preventive Medicine

Dzhioeva O.N.

National Medical Research Center for Therapy and Preventive Medicine

Drapkina O.M.

National Medical Research Center for Therapy and Preventive Medicine;
A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Physiological basis of obesity treatment by percutaneous vagus nerve stimulation

Authors:

Kiselev A.R., Schwartz E.N., Dzhioeva O.N., Drapkina O.M.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2022;25(10): 111‑115

Read: 3331 times


To cite this article:

Kiselev AR, Schwartz EN, Dzhioeva ON, Drapkina OM. Physiological basis of obesity treatment by percutaneous vagus nerve stimulation. Russian Journal of Preventive Medicine. 2022;25(10):111‑115. (In Russ.)
https://doi.org/10.17116/profmed202225101111

Recommended articles:
Features of como­rbidity pathology in young people. Russian Journal of Preventive Medi­cine. 2024;(11):63-69
Chro­nic inflammation in case of obesity-associated diseases. Russian Journal of Preventive Medi­cine. 2025;(1):115-121
Modern view on the etiology of gallstone disease in children. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):59-68
Application of modern methods for acti­vation of brain functions in obese patients (literature review). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6):54-61
Identification of prognostic significant markers of early diagnosis of obesity and meta­bolic diso­rders. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6-2):71-79

References:

  1. Kelly T, Yang W, Chen C-S, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. International Journal of Obesity. 2008;32(9): 1431-1437. https://doi.org/10.1038/ijo.2008.102
  2. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Affairs (Project Hope). 2009;28(5):822-831.  https://doi.org/10.1377/hlthaff.28.5.w822
  3. Ogbonnaya S, Kaliaperumal C. Vagal nerve stimulator: Evolving trends. Journal of Natural Science, Biology, and Medicine. 2013;4(1):8-13.  https://doi.org/10.4103/0976-9668.107254
  4. Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiology and Behavior. 2004;81(2):249-273.  https://doi.org/10.1016/j.physbeh.2004.02.012
  5. Mathis C, Moran TH, Schwartz GJ. Load-sensitive rat gastric vagal afferents encode volume but not gastric nutrients. The American Journal of Physiology. 1998;274(2):280-286.  https://doi.org/10.1152/ajpregu.1998.274.2.R280
  6. Phillips RJ, Powley TL. Gastric volume rather than nutrient content inhibits food intake. The American Journal of Physiology. 1996;271(3 Pt 2):766-769.  https://doi.org/10.1152/ajpregu.1996.271.3.R766
  7. Schwartz GJ, McHugh PR, Moran TH. Integration of vagal afferent responses to gastric loads and cholecystokinin in rats. The American Journal of Physiology. 1991;261(1 Pt 2):64-69.  https://doi.org/10.1152/ajpregu.1991.261.1.R64
  8. Zagorodnyuk VP, Chen BN, Brookes SJ. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. The Journal of Physiology. 2001;534(Pt 1):255-268.  https://doi.org/10.1111/j.1469-7793.2001.00255.x
  9. Willing AE, Berthoud HR. Gastric distension-induced c-fos expression in catecholaminergic neurons of rat dorsal vagal complex. The American Journal of Physiology. 1997;272(1 Pt 2):59-67.  https://doi.org/10.1152/ajpregu.1997.272.1.R59
  10. Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterology and Motility. 2008;20(suppl 1)(01):64-72.  https://doi.org/10.1111/j.1365-2982.2008.01104.x
  11. Page AJ, Martin CM, Blackshaw LA. Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. Journal of Neurophysiology. 2002;87(4):2095-2103. https://doi.org/10.1152/jn.00785.2001
  12. Clarke GD, Davison JS. Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. The Journal of Physiology. 1978;284:55-67.  https://doi.org/10.1113/jphysiol.1978.sp012527
  13. Michl T, Jocic M, Heinemann A, Schuligoi R, Holzer P. Vagal afferent signaling of a gastric mucosal acid insult to medullary, pontine, thalamic, hypothalamic and limbic, but not cortical, nuclei of the rat brain. Pain. 2001; 92(1-2):19-27.  https://doi.org/10.1016/s0304-3959(00)00467-x
  14. Berthoud HR. The vagus nerve, food intake and obesity. Regulatory Peptides. 2008;149(1-3):15-25.  https://doi.org/10.1016/j.regpep.2007.08.024
  15. Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. Brain-gut axis and its role in the control of food intake. Journal of Physiology and Pharmacology. 2004;55(1 Pt 2):137-154. 
  16. Covasa M, Grahn J, Ritter RC. High fat maintenance diet attenuates hindbrain neuronal response to CCK. Regulatory Peptides. 2000;86(1-3):83-88.  https://doi.org/10.1016/s0167-0115(99)00084-1
  17. Daly DM, Park SJ, Valinsky WC, Beyak MJ. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. The Journal of Physiology. 2011;589(Pt 11):2857-2870. https://doi.org/10.1113/jphysiol.2010.204594
  18. Covasa M, Ritter RC. Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides. 1998;19(8):1407-1415. https://doi.org/10.1016/s0196-9781(98)00096-5
  19. Duca FA, Zhong L, Covasa M. Reduced CCK signaling in obese-prone rats fed a high fat diet. Hormones and Behavior. 2013;64(5):812-817.  https://doi.org/10.1016/j.yhbeh.2013.09.004
  20. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. American Journal of Physiology. Endocrinology and Metabolism. 2011;301(1):187-195.  https://doi.org/10.1152/ajpendo.00056.2011
  21. Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacology and Therapeutics. 2017; 179:1-16.  https://doi.org/10.1016/j.pharmthera.2017.05.002
  22. Pavlov VA, Chavan SS, Tracey KJ. Molecular and functional neuroscience in immunity. Annual Review of Immunology. 2018;36:783-812.  https://doi.org/10.1146/annurev-immunol-042617-053158
  23. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853-859.  https://doi.org/10.1038/nature01321
  24. Consolim-Colombo FM, Sangaleti CT, Costa FO, et al. Galantamine alleviates inflammation and insulin resistance in patients with metabolic syndrome in a randomized trial. JCI Insight. 2017;2(14):e93340. https://doi.org/10.1172/jci.insight.93340
  25. Chang EH, Chavan SS, Pavlov VA. Cholinergic control of inflammation, metabolic dysfunction, and cognitive impairment in obesity-associated disorders: mechanisms and novel therapeutic opportunities. Frontiers in Neuroscience. 2019;13:263.  https://doi.org/10.3389/fnins.2019.00263
  26. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex-linking immunity and metabolism. Nature Reviews. Endocrinology. 2012;8(12): 743-754.  https://doi.org/10.1038/nrendo.2012.189
  27. Terrando N, Pavlov VA. Editorial: Neuro-immune interactions in inflammation and autoimmunity. Frontiers in Immunology. 2018;9:772.  https://doi.org/10.3389/fimmu.2018.00772
  28. Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46(6):927-942.  https://doi.org/10.1016/j.immuni.2017.06.008
  29. Olofsson PS, Katz DA, Rosas-Ballina M, et al. α7 nicotinic acetylcholine receptor (α7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Molecular Medicine. 2012;18(1):539-543.  https://doi.org/10.2119/molmed.2011.00405
  30. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921): 384-388.  https://doi.org/10.1038/nature01339
  31. Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052): 98-101.  https://doi.org/10.1126/science.1209985
  32. Pavlov VA, Tracey KJ. Neural circuitry and immunity. Immunologic Research. 2015;63(1-3):38-57.  https://doi.org/10.1007/s12026-015-8718-1
  33. Malbert CH, Picq C, Divoux JL, Henry C, Horowitz M. Obesity-associated alterations in glucose metabolism are reversed by chronic bilateral stimulation of the abdominal vagus nerve. Diabetes. 2017;66(4):848-857.  https://doi.org/10.2337/db16-0847
  34. Li H, Zhang JB, Xu C, Tang QQ, Shen WX, Zhou JZ, Chen JD, Wang YP. Effects and mechanisms of auricular vagus nerve stimulation on high-fat-diet — induced obese rats. Nutrition. 2015;31(11-12):1416-1422. Erratum in: Nutrition. 2016;32(1):156. Han, Li; Jian-Bin, Zhang; Chen, Xu; Qing-Qing, Tang; Wei-Xing, Shen; Jing-Zhu, Zhou; Jian-De, Chen; and Yin-Ping, Wang [Corrected to Li, Han; Zhang, Jian-Bin; Xu, Chen; Tang, Qing-Qing; Shen, Wei-Xing; Zhou, Jing-Zhu; Chen, Jian-De; and Wang, Yin-Ping]. https://doi.org/10.1016/j.nut.2015.05.007
  35. Samniang B, Shinlapawittayatorn K, Chunchai T, et al. Vagus nerve stimulation improves cardiac function by preventing mitochondrial dysfunction in obese-insulin resistant rats. Scientific Reports. 2016;6:19749. https://doi.org/10.1038/srep19749
  36. Yap JYY, Keatch C, Lambert E, et al. Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Frontiers in Neuroscience. 2020;14:284.  https://doi.org/10.3389/fnins.2020.00284
  37. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. Journal of Inflammation Research. 2018;11:203-213.  https://doi.org/10.2147/JIR.S163248
  38. Nemeroff CB, Mayberg HS, Krahl SE, et al. VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology. 2006;31(7):1345-1355. https://doi.org/10.1038/sj.npp.1301082
  39. Farmer AD, Strzelczyk A, Finisguerra A, et al. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience. 2021;14:568051. https://doi.org/10.3389/fnhum.2020.568051
  40. Peuker ET, Filler TJ. The nerve supply of the human auricle. Clinical Anatomy. 2002;15(1):35-37.  https://doi.org/10.1002/ca.1089
  41. Hein E, Nowak M, Kiess O, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. Journal of Neural Transmission. 2013;120(5):821-827.  https://doi.org/10.1007/s00702-012-0908-6
  42. Rong PJ, Fang JL, Wang LP, et al. Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial. BMC Complementary and Alternative Medicine. 2012; 12:255.  https://doi.org/10.1186/1472-6882-12-255
  43. Stefan H, Kreiselmeyer G, Kerling F, et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012;53(7):e115-e118. https://doi.org/10.1111/j.1528-1167.2012.03492.x
  44. Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: part II. Headache. 2016;56(2):259-266.  https://doi.org/10.1111/head.12650
  45. Wolf V, Kühnel A, Teckentrup V, Koenig J, Kroemer NB. Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis. Psychophysiology. 2021;58(11):e13933. https://doi.org/10.1111/psyp.13933
  46. Schachter SC, Saper CB. Vagus nerve stimulation. Epilepsia. 1998;39(7): 677-686.  https://doi.org/10.1111/j.1528-1157.1998.tb01151.x
  47. Brandt C, Volk HA, Loscher W. Striking differences in individual anticonvulsant response to phenobarbital in rats with spontaneous seizures after status epilepticus. Epilepsia. 2004;45(12):1488-1497. https://doi.org/10.1111/j.0013-9580.2004.16904.x
  48. Brezun J M, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience. 1999;89(4):999-1002. https://doi.org/10.1016/s0306-4522(98)00693-9
  49. Castle M, Comoli E, Loewy AD. Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience. 2005;134(2):657-669.  https://doi.org/10.1016/j.neuroscience.2005.04.031
  50. Vijgen GH, Bouvy ND, Leenen L, et al. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PLoS One. 2013;8(10):e77221. https://doi.org/10.1371/journal.pone.0077221
  51. Burneo JG, Faught E, Knowlton R, Morawetz R, Kuzniecky R. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59(3):463-464.  https://doi.org/10.1212/wnl.59.3.463
  52. Pardo JV, Sheikh SA, Kuskowski MA, et al. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. International Journal of Obesity. 2007;31(11):1756-1759. https://doi.org/10.1038/sj.ijo.0803666
  53. Rush AJ, Sackeim HA, Marangell LB, et al. Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biological Psychiatry. 2005;58(5):355-363.  https://doi.org/10.1016/j.biopsych.2005.05.024
  54. Koren MS, Holmes MD. Vagus nerve stimulation does not lead to significant changes in body weight in patients with epilepsy. Epilepsy and Behavior: E&B. 2006;8(1):246-249.  https://doi.org/10.1016/j.yebeh.2005.10.001
  55. Bodenlos JS, Kose S, Borckardt JJ, et al. Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite. 2007;48(2):145-153.  https://doi.org/10.1016/j.appet.2006.07.080
  56. Bodenlos JS, Kose S, Borckardt JJ, et al. Vagus nerve stimulation and emotional responses to food among depressed patients. Journal of Diabetes Science and Technology. 2007;1(5):771-779.  https://doi.org/10.1177/193229680700100524
  57. Gibson EL, Mohiyeddini C. Vagus nerve stimulation confuses appetite: comment on Bodenlos et al (2007). Appetite. 2008;51(1):223-230.  https://doi.org/10.1016/j.appet.2007.10.001

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.