The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Vorobeva O.V.

Chuvash state university named after I.N. Ulyanov

Yakovleva L.M.

Ulyanov Chuvash State University

Lastochkin A.V.

Chuvash State University after I.N. Ulyanova;
Republican Bureau of Forensic Medical Examination

Changes in organs after coronavirus infection COVID-19: a clinical case

Authors:

Vorobeva O.V., Yakovleva L.M., Lastochkin A.V.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2021;24(8): 80‑83

Read: 2991 times


To cite this article:

Vorobeva OV, Yakovleva LM, Lastochkin AV. Changes in organs after coronavirus infection COVID-19: a clinical case. Russian Journal of Preventive Medicine. 2021;24(8):80‑83. (In Russ.)
https://doi.org/10.17116/profmed20212408180

Recommended articles:
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146
Diffuse changes in the brain in the acute phase of COVID-19 and after infe­ction. Russian Journal of Archive of Pathology. 2025;(1):5-15
Liver pathology in COVID-19. Russian Journal of Archive of Pathology. 2025;(1):53-59

References:

  1. Vorobeva OV, Lastochkin AV. A clinical and morphological case of COVID-19. Epidemiology and infectious diseases. Actual issues. 2020;10(2):90-93. (In Russ.). https://doi.org/10.18565/epidem.2020.2.90-93
  2. Vorobeva OV, Lastochkin AV. Organ-specific pathomorphological changes during COVID-19. Russian Journal of Infection and Immunity. 2020;10(3):587-590. (In Russ.). https://doi.org/10.15789/2220-7619-PCI-1483
  3. Zinserling VA, Vashukova MA, Vasilyeva MV, Isakov AN, Lugovskaya NA, Narkevich TA, Sukhanova YuV, Semenova NYu, Gusev DA. Issues of pathology of a new coronavirus infection COVID-19. Journal Infectology. 2020;12(2):5-11. (In Russ.). https://doi.org/10.22625/2072-6732-2020-12-2-5-11
  4. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020;8:807-815. 
  5. Collins BF, Raghu G. Antifibrotic therapy for fibrotic lung disease beyond idiopathic pulmonary fibrosis. Eur Respir Rev. 2019;28:190022.
  6. Pugh CW, Ratcliffe PJ. New horizons in hypoxia signaling pathways. Exp Cell Res. 2017;356:116-121. 
  7. Cameron SJ, Mix DS, Ture SK, Schmidt RA, Mohan A, Pariser D, Stoner MC, Shah P, Chen L, Zhang H, Field DJ, Modjeski KL, Toth S, Morrell CN. Hypoxia and ischemia promote a maladaptive platelet phenotype. Arterioscler Thromb Vasc Biol. 2018;38:1594-1606.
  8. Gupta N, Zhao YY, Evans CE. The stimulation of thrombosis by hypoxia. Thromb Res. 2019;181:77-83. 
  9. Frangou E, Chrysanthopoulou A, Mitsios A, Kambas K, Arelaki S, Angelidou I, Arampatzioglou A, Gakiopoulou H, Bertsias GK, Verginis P, Ritis K, Boumpas DT. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and inter-leukin-17A (IL-17A). Ann Rheum Dis. 2019;78:238-248. 

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.