Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Головченко И.О.

ФГАОУ ВО «Белгородский государственный национальный исследовательский университет» Минобрнауки России

Пономаренко И.В.

ФГАОУ ВО «Белгородский государственный национальный исследовательский университет» Минобрнауки России

Орлова В.С.

ФГАОУ ВО «Белгородский государственный национальный исследовательский университет» Минобрнауки России

Батлуцкая И.В.

ФГАОУ ВО «Белгородский государственный национальный исследовательский университет» Минобрнауки России

Ефремова О.А.

ФГАОУ ВО «Белгородский государственный национальный исследовательский университет» Минобрнауки России

Чурносов М.И.

ФГАОУ ВО «Белгородский государственный национальный исследовательский университет» Минобрнауки России

Роль полиморфизма rs148982377 гена ZNF789 в формировании бесплодия у больных эндометриозом

Авторы:

Головченко И.О., Пономаренко И.В., Орлова В.С., Батлуцкая И.В., Ефремова О.А., Чурносов М.И.

Подробнее об авторах

Журнал: Проблемы репродукции. 2024;30(1): 64‑71

Прочитано: 1472 раза


Как цитировать:

Головченко И.О., Пономаренко И.В., Орлова В.С., Батлуцкая И.В., Ефремова О.А., Чурносов М.И. Роль полиморфизма rs148982377 гена ZNF789 в формировании бесплодия у больных эндометриозом. Проблемы репродукции. 2024;30(1):64‑71.
Golovchenko IO, Ponomarenko IV, Orlova VS, Batlutskaya IV, Efremova OA, Churnosov MI. The role of polymorphism rs148982377 of the ZNF789 gene in the formation of infertility in patients with endometriosis. Russian Journal of Human Reproduction. 2024;30(1):64‑71. (In Russ.)
https://doi.org/10.17116/repro20243001164

Рекомендуем статьи по данной теме:
Ас­со­ци­ация вос­па­ле­ния и син­дро­ма хро­ни­чес­кой ус­та­лос­ти при бо­лез­ни Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(9):79-87

Введение

Эндометриоз представляет собой гинекологическое заболевание, характеризующееся ростом эндометриоподобных тканей как внутри, так и снаружи полости малого таза [1]. Данное заболевание диагностируется примерно у 176—179 млн женщин во всем мире, что составляет около 10% всех женщин репродуктивного возраста [2, 3]. Среди кинических проявлений эндометриоза преобладают дисменорея, нарушение фертильности, хроническая тазовая боль, бесплодие, которые негативно сказываются на качестве жизни пациенток [4, 5]. Следует отметить, что частота выявления бесплодия среди женщин с эндометриозом составляет 35—50% [6, 7]. Важно, что лечение бесплодия, связанного с эндометриозом, остается сложной задачей, для решения которой необходим комплексный подход (консервативные и хирургические методы лечения) и требуются серьезные финансовые затраты [8].

На сегодняшний день молекулярные механизмы развития данного заболевания остаются весьма «загадочными» и в значительной степени неизвестными, несмотря на большое количество работ, посвященных изучению этиопатогенеза эндометриоза [9, 10]. Природа данного заболевания и его основных клинических проявлений (бесплодие и др.) является сложной (многофакторной), включающей большое количество гормональных, воспалительных, генетических, иммунологических факторов и факторов окружающей среды [3, 7, 11, 12].

Следует отметить, что с генетических позиций эндометриоз активно изучается (проведено 15 полногеномных исследований [13] и выполнено много работ по поиску ассоциаций генов-кандидатов с заболеванием [14—18]). Однако роль наследственных факторов в формировании отдельных наиболее важных клинических проявлений заболевания (бесплодие и др.) до настоящего времени изучена недостаточно [19—21], что не позволяет дать объективные оценки вклада генетических детерминант в развитие клинических особенностей эндометриоза. Следует отметить, что эти клинические особенности течения заболевания (развитие бесплодия) имеют не только важное медицинское (необходимо проводить лечебные мероприятия с целью нормализации репродуктивной функции женщины) [22], но и социальное (отсутствие детей в семье повышает риск расторжения данного брака и т.д.) [23] значение. Предупреждение возникновения бесплодия у женщин с эндометриозом на основе понимания генетической природы его возникновения позволит существенно улучшить качество жизни больных.

Цель исследования — оценить роль полиморфных локусов генов половых гормонов в формировании бесплодия у пациенток с эндометриозом.

Материал и методы

Выборка для исследования составила 395 женщин, из которых 132 больных эндометриозом с бесплодием и 263 пациентки — с эндометриозом без бесплодия. Группа исследования формировалась на базе гинекологического отделения ОГБУЗ «Белгородская областная клиническая больница Святителя Иоасафа» (Белгород) под контролем комиссии по этике НИУ «БелГУ»и включала уроженок Центрального Черноземья России русской национальности [24, 25], давших согласие на участие в исследовании.

Исследование выполнено в соответствии со стандартами надлежащей клинической практики (Good Clinical Practice) и принципами Хельсинкской декларации. Протокол исследования одобрен этическим комитетом медицинского института НИУ «БелГУ». До включения в исследование у всех участников получено письменное информированное добровольное согласие.

Анализируемые группы больных эндометриозом с бесплодием (39,75 года) и без него (40,73 года) сопоставимы по возрастному показателю (p>0,05).

Фенольно-хлороформным методом осуществлялось выделение ДНК из образцов крови [26]. Девять полиморфных локусов генов половых гормонов ZNF789 (rs148982377), ZKSCAN5 (rs34670419), FSHB (rs11031002, rs11031005), SLC22A10 (rs112295236), ANO2 (rs117585797), CHD9 (rs117145500), SHBG (rs727428), TP53 (rs1641549) были специально отобраны для настоящего исследования согласно их связи с уровнем половых гормонов у женщин в ранее проведенных полногеномных исследованиях [27, 28]. Согласно данным биоинформатического ресурса HaploReg [29], все анализируемые локусы демонстрируют выраженное регуляторное значение и влияют на экспрессию генов. Генотипирование исследуемых полиморфных локусов генов половых гормонов выполнялось с помощью ПЦР (метод TaqMan зондов, использовались наборы реагентов, синтезированные ООО «ТестГен», Ульяновск).

При сравнительном анализе частот аллелей и генотипов между больными эндометриозом с бесплодием и без него использованы критерий χ2 [30] и программное обеспечение Statistica. Изучение вовлеченности полиморфных локусов генов половых гормонов в формирование бесплодия при эндометриозе осуществлялось с помощью программы gPLINK [31]. Нами применен метод логистического регрессионного анализа (тестирована аддитивная генетическая модель) [32]. Оценка характера установленных ассоциаций однонуклеотидного полиморфизма с бесплодием при эндометриозе основывалась на показателях отношения шансов (OR) и 95% доверительного интервала (OR 95% ДИ) [33]. Проводилась коррекция на множественные сравнения [34] с вычислением показателя pperm (статистически значимым считали pperm<0,05 [35]).

Оценка функциональных эффектов полиморфизма генов половых гормонов, вовлеченных в развитие бесплодия при эндометриозе, осуществлялась с использованием общедоступных биоинформатических ресурсов [36]: HaploReg (анализ эпигенетических эффектов) [29] и GTExportal (изучена связь с транксрипцией генов) [37], а также ранее опубликованных методик [38, 39].

Результаты и обсуждение

Установлено, что в группе пациенток с эндометриозом без бесплодия распределение молекулярно-генетического маркера rs1641549 отклоняется от равновесия Харди—Вайнберга (p=0,001) (см. таблицу). В связи с этим полиморфный локус rs1641549 исключен из дальнейшего анализа ассоциаций.

Сравнительный анализ частот аллелей и генотипов полиморфных локусов генов половых гормонов у больных эндометриозом с наличием или отсутствием бесплодия

Локусы

Аллели, генотипы

Больные эндометриозом с бесплодием (n=132)

Больные эндометриозом без бесплодия (n=263)

OR (95% CI)

p

n (%)

rs148982377

T

252 (96,18)

474 (93,31)

1,81 (0,84—3,98)

0,14

C

10 (3,82)

34 (6,69)

0,55 (0,25—1,19)

T/T

121 (92,37)

221 (87,01)

1,81 (0,82—4,07)

0,16

T/C

10 (7,63)

32 (12,60)

0,57 (0,25—1,27)

0,19

C/C

0 (0,00)

1 (0,39)

1,00 (0,99—34,40)

1,00

Ho/He (PHWE)

0,076/0,073 (0,100)

0,126/0,125 (0,100)

T/T vs. T/C vs. C/C (аддитивная модель, аллель эффекта C)

0,45 (0,20—0,99)

0,05

rs34670419

G

252 (96,18)

482 (95,26)

1,25 (0,56—2,86)

0,68

T

10 (3,82)

24 (4,74)

0,80 (0,35—1,78)

G/G

121 (92,37)

230 (90,90)

1,21 (0,53—2,82)

0,77

G/T

10 (7,63)

22 (8,70)

0,87 (0,37—2,00)

0,87

T/T

0 (0,00)

1 (0,40)

0,00 (1,00—34,27)

1,00

Ho/He (PHWE)

0,076/0,073 (0,100)

0,087/0,090 (0,436)

G/G vs. G/T vs. T/T (аддитивная модель, аллель эффекта T)

0,70 (0,29—1,66)

0,42

rs11031002

T

229 (89,45)

454 (90,80)

0,86 (0,51—1,46)

0,64

A

27 (10,55)

46 (9,20)

1,16 (0,68—1,97)

T/T

102 (79,69)

207 (82,80)

0,82 (0,46—1,45)

0,55

T/A

25 (19,53)

40 (16,00)

1,27 (0,71—2,29)

0,47

A/A

1 (0,78)

3 (1,20)

0,65 (0,03—7,05)

1,00

Ho/He (PHWE)

0,195/0,189 (1,000)

0,456/0,438 (0,205)

T/T vs. T/A vs. A/A (аддитивная модель, аллель эффекта A)

1,24 (0,71—2,16)

0,45

rs11031005

T

232 (88,55)

462 (91,67)

0,70 (0,42—1,19)

0,20

C

30 (11,45)

42 (8,33)

1,42 (0,84—2,40)

T/T

102 (77,86)

211 (83,73)

0,68 (0,39—1,20)

0,20

T/C

28 (21,38)

40 (15,87)

1,44 (0,81—2,55)

0,23

C/C

1 (0,76)

1 (0,40)

1,93 (0,05—70,74)

1,00

Ho/He (PHWE)

0,214/0,203 (0,100)

0,159/0,153 (0,100)

T/T vs. T/C vs. C/C (аддитивная модель, аллель эффекта C)

1,49 (0,84—2,64)

0,18

rs112295236

C

250 (95,42)

469 (92,69)

1,64 (0,81—3,40)

0,19

G

12 (4,58)

37 (7,31)

0,61 (0,29—1,24)

C/C

119 (90,84)

218 (86,17)

1,59 (0,76—3,38)

0,25

C/G

12 (9,16)

33 (13,04)

0,67 (0,32—1,41)

0,34

G/G

0 (0,00)

2 (0,79)

0,01 (0,00—7,87)

0,79

Ho/He (PHWE)

0,092/0,087 (0,100)

0,130/0,136 (0,629)

C/C vs. C/G vs. G/G (аддитивная модель, аллель эффекта G)

0,54 (0,25—1,16)

0,12

rs117585797

C

255 (97,33)

486 (97,98)

0,75 (0,26—2,21)

0,75

A

7 (2,67)

10 (2,02)

1,33 (0,45—3,85)

C/C

124 (94,66)

238 (95,97)

0,74 (0,25—2,23)

0,75

C/A

7 (5,34)

10 (4,03)

1,34 (0,45—3,94)

0,75

A/A

0 (0,00)

0 (0,00)

*

*

Ho/He (PHWE)

0,053/0,052 (0,100)

0,040/0,039 (0,100)

C/C vs. C/A vs. A/A| (аддитивная модель, аллель эффекта A)

1,11 (0,34—3,60)

0,86

rs117145500

A

235 (89,69)

439 (88,15)

1,17 (0,71—1,95)

0,60

С

27 (10,31)

59 (11,85)

0,86 (0,51—1,42)

A/A

105 (80,15)

194 (77,91)

1,15 (0,66—2,00)

0,71

A/C

25 (19,09)

51 (20,48)

0,92 (0,52—1,61)

0,85

C/C

1 (0,76)

4 (1,61)

0,47 (0,02—4,52)

0,83

Ho/He (PHWE)

0,191/0,185 (0,100)

0,205/0,209 (0,100)

A/A vs. A/C vs. C/C (аддитивная модель, аллель эффекта С)

0,74 (0,43—1,29)

0,29

rs727428

С

160 (62,00)

317 (63,15)

0,95 (0,69—1,32)

0,82

T

98 (37,98)

185 (36,85)

1,05 (0,76—1,45)

C/C

52 (40,31)

99 (39,44)

1,04 (0,66—1,64)

0,96

C/T

56 (43,41)

119 (47,41)

0,85 (0,54—1,33)

0,53

T/T

21 (16,28)

33 (13,15)

1,29 (0,68—2,42)

0,50

Ho/He

(PHWE)

0,434/0,471 (0,356)

0,474/0,465 (0,892)

C/C vs. C/T vs. T/T (аддитивная модель, аллель эффекта Т)

0,97 (0,61—1,38)

0,86

rs1641549

C

206 (78,63)

390 (77,69)

**

**

T

56 (21,37)

112 (22,31)

**

**

C/C

79 (60,31)

161 (64,14)

**

**

C/T

48 (36,64)

68 (27,09)

**

**

T/T

4 (3,05)

22 (8,77)

**

**

Ho/He (PHWE)

0,366/0,336 (0,436)

0,271/0,347 (0,001)

Примечание. OR — показатель отношения шансов; 95% ДИ — 95% доверительный интервал отношения щансов; p — уровень значимости; Ho — наблюдаемая гетерозиготность; He — ожидаемая гетерозиготность; PHWE — уровень значимости отклонения от закона Харди—Вайнберга; * — не определяется, ** — показатели не рассчитывались в связи с тем, что данный локус исключен из анализа вследствие несоответствия закону Харди—Вайнберга.

При сравнении генетических характеристик 2 групп пациенток с эндометриозом и бесплодием и без него между собой (см. таблицу) выявлено, что аллель C rs148982377 является протективным фактором формирования бесплодия при эндометриозе (pperm=0,05, p=0,05, OR=0,45, 95% ДИ 0,20—0,99).

Согласно данным биоинформатической базы HaploReg, этот однонуклеотидный полиморфизм локализуется в области гистонов, маркирующих энхансеры/промоторы в клетках крови (первичные натуральные киллеры, T-клетки, B-клетки), различных отделах головного мозга (гиппокамп, черная субстанция, хвостатое ядро, кортикальная часть лимбической системы и др.), жировых клетках (ядра), скелетной мускулатуре женщин, ДНКаза-гиперчувствительном сайте в крови, в TF-связывающем домене для 2 факторов транскрипции: TF3 и Bach1. Различия между аллелями C (alt) и T (ref) rs148982377 в LOD scores для указанных факторов транскрипции составляют 2,8 и –1,7 соответственно. Следовательно, генетический вариант C rs148982377, который является протективным фактором формирования бесплодия при эндометриозе (OR=0,45), способствует повышению чувствительности регуляторного участка ДНК к транскрипционному фактору TF3 и снижению аффинности к фактору транскрипции Bach1.

С использованием базы данных GTExportal установлены ассоциации этого молекулярно-генетического маркера с экспрессией генов GS1-259H13.2, ZKSCAN5, CYP3A7. Так, аллель C rs148982377 гена ZNF789, связан с пониженной экспрессией гена GS1-259H13.2 в щитовидной железе (β= –0,53, p=3,9×10–6, pFDR≤0,05) и гена ZKSCAN5 в крови (β= –0,43, p=1,6×10–9, pFDR≤0,05), а также с повышенной транскрипцией гена CYP3A7 в подкожно-жировой клетчатке (β=0,74, p=1,7×10–7, pFDR≤0,05) и надпочечниках (β=1,03, p=6,6×10–9, pFDR≤0,05). Кроме того, выявлено, что аллель C rs148982377 гена ZNF789 ассоциирован с пониженным уровнем альтернативного сплайсинга гена GPC2 (интрон ID 100171925:100172087:clu_20960) в черной субстанции головного мозга (β= –2,10, p=2,4×10–6, pFDR≤0,05).

По материалам K.S. Ruth и соавт. (2016), генетический вариант C rs148982377 гена ZNF789 ассоциирован с низким уровнем дегидроэпиандростерона (ДГЭА) в сыворотке крови женщин (β= –0,53) [27]. ДГЭА является одним из главных предшественников половых стероидов, который секретируется в основном корой надпочечников и клетками фолликула яичников [40]. Считается, что данный гормон, взаимодействуя с рецепторами андрогенов на антральном фолликуле, стимулирует пролиферацию клеток фолликулярной мембраны и клеток гранулезы, что приводит к снижению апоптоза яйцеклеток, уменьшению атрезии фолликулов и способствует сохранению овариального резерва [41]. Следует отметить, что данный гормон оказывает влияние на качество и зрелость ооцитов, способствует восстановлению ДНК в ооцитах [41—44]. Таким образом, ДГЭА характеризуется положительным влиянием на развитие эмбрионов [45]. В литературе есть данные о том, что ДГЭА может снижать частоту выкидышей у бесплодных женщин (36—40 лет) при ЭКО [46].

Исследование на животных показало, что ДГЭА может способствовать пролиферации гранулезных клеток, что приводит к инициированию примордиальных фолликулов и развитию гонадотропин-чувствительных преантральных и ранних антральных фолликулов [47]. Кроме того, установлено, что ДГЭА повышает концентрацию инсулиноподобного фактора роста 1-го типа в сыворотке крови, который оказывает благотворное влияние на развитие фолликулов и качество ооцитов [48]. Имеются данные о связи ДГЭА с возрастными изменениями в метаболизме и функциях нейронов, а также с изменениями в сердечно-сосудистой системе [40].

По данным K.S. Ruth и соавт. (2016), ДГЭА положительно коррелирует с тестостероном (β=0,55), индексом свободного тестостерона (FAI) (β=0,52) и имеет отрицательную корреляцию с глобулином, связывающим половые гормоны (SHBG) (β= –0,15) [27]. Следует отметить, что эти половые гормоны играют важную роль в формировании эндометриоза [10]. В обзорной статье N.L. Dinsdale и соавт. (2021) указывается на связь уровней тестостерона, SHBG и FAI с риском развития эндометриоза. Следует отметить, что ДГЭА влияет на экспрессию рецепторов к фолликулостимулирующему гормону, который также имеет значение в патофизиологии эндометриоза [10]. Имеются данные литературы о связи повышенного уровня фолликулостимулирующего гормона с более высоким риском развития эндометриоза [10].

Заключение

В работе установлена связь GWAS-значимого полиморфизма rs148982377 гена ZNF789 с формированием бесплодия у больных эндометриозом. Аллель C rs148982377 гена ZNF789 является протективным фактором развития бесплодия при эндометриозе (pperm=0,05, OR=0,45). Полиморфный маркер rs148982377 гена ZNF789 демонстрирует выраженные эпигенетические эффекты (расположен в области гистонов, маркирующих энхансеры/промоторы, ДНКаза-гиперчувствительном сайте), ассоциирован с экспрессией генов GS1-259H13.2, ZKSCAN5, CYP3A7 в органах и тканях (в щитовидной железе, крови, подкожно-жировой клетчатке и надпочечниках), вовлеченных в патофизиологию заболевания, а также связан с уровнем альтернативного сплайсинга гена GPC2.

Участие авторов:

Концепция и дизайн исследования — Головченко И.О., Пономаренко И.В., Чурносов М.И.

Сбор и обработка материала — Головченко И.О., Орлова В.С.

Статистическая обработка — Головченко И.О., Батлуцкая И.В., Ефремова О.А.

Написание текста — Головченко И.О.

Редактирование — Чурносов М.И., Пономаренко И.В.

Авторы заявляют об отсутствии конфликта интересов.

Литература / References:

  1. Foster WG, Leonardi M. Endometriosis — novel approaches and controversies debated. Reproduction and Fertility. 2021;2(4):39-41.  https://doi.org/10.1530/RAF-21-0097
  2. Della Corte L, Di Filippo C, Gabrielli O, Reppuccia S, La Rosa VL, Ragusa R, Fichera M, Commodari E, Bifulco G, Giampaolino P. The Burden of Endometriosis on Women’s Lifespan: A Narrative Overview on Quality of Life and Psychosocial Wellbeing. International Journal of Environmental Research and Public Health. 2020; 17(13):4683. https://doi.org/10.3390/ijerph17134683
  3. Zubrzycka A, Zubrzycki M, Perdas E, Zubrzycka M. Genetic, Epigenetic, and Steroidogenic Modulation Mechanisms in Endometriosis. Journal of Clinical Medicine. 2020;9(5):1309. https://doi.org/10.3390/jcm9051309
  4. van Poll M, van Barneveld E, Aerts L, Maas JWM, Lim AC, de Greef BTA, Bongers MY, van Hanegem N. Endometriosis and Sexual Quality of Life. Sexual Medicine. 2020;8(3):532-544.  https://doi.org/10.1016/j.esxm.2020.06.004
  5. Missmer SA, Tu FF, Agarwal SK, Chapron C, Soliman AM, Chiuve S, Eichner S, Flores-Caldera I, Horne AW, Kimball AB, Laufer MR, Leyland N, Singh SS, Taylor HS, As-Sanie S. Impact of Endometriosis on Life-Course Potential: A Narrative Review. International Journal of General Medicine. 2021;7(14):9-25.  https://doi.org/10.2147/IJGM.S261139
  6. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nature Reviews. Disease Primers. 2018;4(1):9.  https://doi.org/10.1038/s41572-018-0008-5
  7. Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, Kohlmeier A, Yin P, Milad M, Wei J. Endometriosis. Endocrine reviews. 2019;40(4):1048-1079. https://doi.org/10.1210/er.2018-00242
  8. Spencer S, Lazaridis A, Grammatis A, Hirsch M. The treatment of endometriosis-associated infertility. Current Opinion in Obstetrics and Gynecology. 2022;34(5):300-314.  https://doi.org/10.1097/GCO.0000000000000806
  9. Sapkota Y, Steinthorsdottir V, Morris AP, Fassbender A, Rahmioglu N, De Vivo I, Buring JE, Zhang F, Edwards TL, Jones S, O D, Peterse D, Rexrode KM, Ridker PM, Schork AJ, MacGregor S, Martin NG, Becker CM, Adachi S, Yoshihara K, Enomoto T, Takahashi A, Kamatani Y, Matsuda K, Kubo M, Thorleifsson G, Geirsson RT, Thorsteinsdottir U, Wallace LM; iPSYCH-SSI-Broad Group; Yang J, Velez Edwards DR, Nyegaard M, Low SK, Zondervan KT, Missmer SA, D’Hooghe T, Montgomery GW, Chasman DI, Stefansson K, Tung JY, Nyholt DR. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nature Communications. 2017; 24(8): 15539. https://doi.org/10.1038/ncomms15539
  10. Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorder. Evolutionary Applications. 2021;14(7): 1693-1715. https://doi.org/10.1111/eva.13244
  11. Laganà AS, Garzon S, Götte M, Viganò P, Franchi M, Ghezzi F, Martin DC. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. International Journal of Molecular Sciences. 2019;20(22):5615. https://doi.org/10.3390/ijms20225615
  12. Malvezzi H, Marengo EB, Podgaec S, Piccinato CA. Endometriosis: current challenges in modeling a multifactorial disease of unknown etiology. Journal of Translational Medicine. 2020;18(1):311.  https://doi.org/10.1186/s12967-020-02471-0
  13. GWAS Catalog. Accessed April 24, 2023. https://www.ebi.ac.uk/gwas/)
  14. Baranov V, Malysheva O, Yarmolinskaya M. Pathogenomics of Endometriosis Development. International Journal of Molecular Sciences. 2018;19(7):1852. https://doi.org/10.3390/ijms19071852
  15. Vassilopoulou L, Matalliotakis M, Zervou MI, Matalliotaki C, Krithinakis K, Matalliotakis I, Spandidos DA, Goulielmos GN. Defining the genetic profile of endometriosis. Experimental and Therapeutic Medicine. 2019;17(5):3267-3281. https://doi.org/10.3892/etm.2019.7346
  16. Matalliotaki C, Matalliotakis M, Rahmioglu N, Mavromatidis G, Matalliotakis I, Koumantakis G, Zondervan K, Spandidos DA, Goulielmos GN, Zervou MI. Role of FN1 and GREB1 gene polymorphisms in endometriosis. Molecular Medicine Reports. 2019; 20(1):111-116.  https://doi.org/10.3892/mmr.2019.10247
  17. Wei Z, Zhang M, Zhang X, Yi M, Xia X, Fang X. NAT2 gene polymorphisms and endometriosis risk: A PRISMA-compliant meta-analysis. PLoS One. 2019;14(12):e0227043. https://doi.org/10.1371/journal.pone.0227043
  18. Ponomarenko I, Reshetnikov E, Polonikov A, Verzilina I, Sorokina I, Elgaeva EE, Tsepilov YA, Yermachenko A, Dvornyk V, Churnosov M. Candidate genes for age at menarche are associated with endometriosis. Reproductive Biomedicine Online. 2020;41(5):943-956.  https://doi.org/10.1016/j.rbmo.2020.04.016
  19. Радзинский В.Е., Алтухова О.Б. Молекулярно-генетические детерминанты бесплодия при генитальном эндометриозе. Научные результаты биомедицинских исследований. 2018;4(3):28-37.  https://doi.org/10.18413/2313-8955-2018-4-3-0-3
  20. Irimia T, Pușcașiu L, Mitranovici MI, Crișan A, Budianu MA, Bănescu C, Chiorean DM, Niculescu R, Sabău AH, Cocuz IG, Cotoi OS. Oxidative-Stress Related Gene Polymorphism in Endometriosis-Associated Infertility. Medicina. 2022;58(8):1105. https://doi.org/10.3390/medicina58081105
  21. Zhang HB, Li Y, Wu JL, Zhao J, Tian YJ, Kang S. Genetic Variation of Glutathione S-Transferase M1 Is Associated with Patients with Ovarian Endometriosis and Endometriosis-Related Primary Infertility. Public Health Genomics. 2021;24(5-6):261-266.  https://doi.org/10.1159/000517266
  22. Nayak R, Chattopadhyay T, Mallick B. Identification of potential repurposed drugs for treating endometriosis-associated infertility among women. Chemico-Biological Interactions. 2022;365:110110. https://doi.org/10.1016/j.cbi.2022.110110
  23. Abd El-Kader AI, Gonied AS, Lotfy Mohamed M, Lotfy Mohamed S. Impact of Endometriosis-Related Adhesions on Quality of Life among Infertile Women. International Journal of Fertility and Sterility. 2019;13(1):72-76.  https://doi.org/10.22074/ijfs.2019.5572
  24. Reshetnikov E, Ponomarenko I, Golovchenko O, Sorokina I, Batlutskaya I, Yakunchenko T, Dvornyk V, Polonikov A, Churnosov M.The VNTR polymorphism of the endothelial nitric oxide synthase gene and blood pressure in women at the end of pregnancy. Taiwanese Journal of Obstetrics and Gynecology. 2019;58(3):390-395.  https://doi.org/10.1016/j.tjog.2018.11.035
  25. Tikunova E, Ovtcharova V, Reshetnikov E, Dvornyk V, Polonikov A, Bushueva O, Churnosov M.Genes of tumor necrosis factors and their receptors and the primary open angle glaucoma in the population of Central Russia. International Journal of Ophthalmology. 2017;10:1490-1494. https://doi.org/10.18240/ijo.2017.10.02
  26. Eliseeva N, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. LOXL1 gene polymorphism candidates for exfoliation glaucoma are also associated with a risk for primary open-angle glaucoma in a Caucasian population from central Russia. Molecular Vision. 2021;27:262-269. 
  27. Ruth KS, Campbell PJ, Chew S, Lim EM, Hadlow N, Stuckey BG, Brown SJ, Feenstra B, Joseph J, Surdulescu GL, Zheng HF, Richards JB, Murray A, Spector TD, Wilson SG, Perry JR. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes. European Journal of Human Genetics. 2016;24(2):284-290.  https://doi.org/10.1038/ejhg.2015.102
  28. Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, Beaumont RN, Wittemans L, Martin S, Busch AS, Erzurumluoglu AM, Hollis B, O’Mara TA; Endometrial Cancer Association Consortium; McCarthy MI, Langenberg C, Easton DF, Wareham NJ, Burgess S, Murray A, Ong KK, Frayling TM, Perry JRB. Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine. 2020;26(2):252-258.  https://doi.org/10.1038/s41591-020-0751-5
  29. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic acids research. 2016;D1:D877-D881. https://doi.org/10.1093/nar/gkv1340
  30. Starikova D, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Novel data about association of the functionally significant polymorphisms of the MMP-9 gene with exfoliation glaucoma in the Caucasian population of Central Russia. Ophthalmic research. 2021;64(3):458-464.  https://doi.org/10.1159/000512507
  31. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics. 2007;81(3): 559-575.  https://doi.org/10.1086/519795
  32. Minyaylo O, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Functionally significant polymorphisms of the MMP-9 gene are associated with peptic ulcer disease in the Caucasian population of Central Russia. Scientific Reports. 2021;11(1):13515. https://doi.org/10.1038/s41598-021-92527-y
  33. Ponomarenko I, Reshetnikov E, Polonikov A, Sorokina I, Yermachenko A, Dvornyk V, Churnosov M. Candidate genes for age at menarche are associated with endometrial hyperplasia. Gene. 2020; 757:144933. https://doi.org/10.1016/j.gene.2020.144933
  34. Che R, Jack JR, Motsinger-Reif AA, Brown CC. An adaptive permutation approach for genome-wide association study: evaluation and recommendations for use. BioData Mining. 2014;7:9.  https://doi.org/10.1186/1756-0381-7-9
  35. Moskalenko M, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Polymorphisms of the matrix metalloproteinase genes are associated with essential hypertension in a Caucasian population of Central Russia. Scientific Reports. 2021;11(1):5224. https://doi.org/10.1038/s41598-021-84645-4
  36. Dvornyk V. Integrated in-depth bioinformatic analysis suggests RELCH/KIAA1468, LINC02341, and AKAP11 as candidate genes for ages at menarche and menopause. Research Results in Biomedicine. 2021;7(3):220-231.  https://doi.org/10.18413/2658-6533-2021-7-3-0-2
  37. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318-1330. https://doi.org/10.1126/science.aaz1776
  38. Golovchenko O, Abramova M, Ponomarenko I, Reshetnikov E, Aristova I, Polonikov A, Dvornyk V, Churnosov M. Functionally significant polymorphisms of ESR1and PGR and risk of intrauterine growth restriction in population of Central Russia. European Journal of Obstetrics, Gynecology, and Reproductive Biology. 2020; 253:52-57.  https://doi.org/10.1016/j.ejogrb.2020.07.045
  39. Polonikov A, Rymarova L, Klyosova E, Volkova A, Azarova I, Bushueva O, Bykanova M, Bocharova I, Zhabin S, Churnosov M, Laskov V, Solodilova M. Matrix metalloproteinases as target genes for gene regulatory networks driving molecular and cellular pathways related to a multistep pathogenesis of cerebrovascular disease. Journal of Cellular Biochemistry. 2019;120(10):16467-16482. https://doi.org/10.1002/jcb.28815
  40. Prough RA, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. Journal of Molecular Endocrinology. 2016;56(3):139-155.  https://doi.org/10.1530/JME-16-0013
  41. Zhang Y, Li M, Li L, Xiao J, Chen Z. Randomized Controlled Study of the Effects of DHEA on the Outcome of IVF in Endometriosis. Evidence-based Complementary and Alternative Medicine. 2021;20: 3569697. https://doi.org/10.1155/2021/3569697
  42. Neves AR, Montoya-Botero P, Polyzos NP. The Role of Androgen Supplementation in Women with Diminished Ovarian Reserve: Time to Randomize, Not Meta-Analyze. Frontiers in Endocrinology. 2021; 12:653857. https://doi.org/10.3389/fendo.2021.653857
  43. Chern CU, Tsui KH, Vitale SG, Chen SN, Wang PH, Cianci A, Tsai HW, Wen ZH, Lin LT. Dehydroepiandrosterone (DHEA) supplementation improves in vitro fertilization outcomes of poor ovarian responders, especially in women with low serum concentration of DHEA-S: a retrospective cohort study. Reproductive Biology and Endocrinology. 2018;16(1):90.  https://doi.org/10.1186/s12958-018-0409-z
  44. Martin JH, Aitken RJ, Bromfield EG, Nixon B. DNA damage and repair in the female germline: contributions to ART. Human Reproduction Update. 2019;25(2):180-201.  https://doi.org/10.1093/humupd/dmy040
  45. Wang W, Liu H, Li J, Wei D, Zhang J, Wang J, Ma J, Shi Y, Chen ZJ. Effect of preconceptional DHEA treatment on in vitro fertilization outcome in poor ovarian respond women: study protocol for a randomized controlled trial. Trials. 2019;20(1):50.  https://doi.org/10.1186/s13063-018-3146-x
  46. Tartagni M, Cicinelli MV, Baldini D, Tartagni MV, Alrasheed H, DeSalvia MA, Loverro G, Montagnani M. Dehydroepiandrosterone decreases the age-related decline of the in vitro fertilization outcome in women younger than 40 years old. Reproductive Biology and Endocrinology. 2015;13(1):18.  https://doi.org/10.1186/s12958-015-0014-3
  47. Hassa H, Aydin Y, Ozatik O, Erol K, Ozatik Y. Effects of dehydroepiandrosterone (DHEA) on follicular dynamics in a diminished ovarian reserve in vivo model. Systems Biology in Reproductive Medicine. 2015;61(3):117-121.  https://doi.org/10.3109/19396368.2015.1011353
  48. Tajiri M, Suzuki Y, Tsuneyama N, Arinami H, Someya T. Hormonal dynamics effect of serum insulin-like growth factor I and cortisol/dehydroepiandrosterone sulfate ratio on symptom severity of major depressive disorder. Journal of Clinical Psychopharmacology. 2019;39(4):367-371.  https://doi.org/10.1097/jcp.0000000000001071
  • Hartman EK, Eslick GD. The prognosis of women diagnosed with breast cancer before, during and after pregnancy: a meta-analysis. Breast Cancer Research and Treatment. 2016;160(2):347-360.  https://doi.org/10.1007/s10549-016-3989-3
  • Khazzaka A, Rassy E, Sleiman Z, Boussios S, Pavlidis N. Systematic review of fetal and placental metastases among pregnant patients with cancer. Cancer Treatment Reviews. 2022;104:102356. https://doi.org/10.1016/j.ctrv.2022.102356
  • National Cancer Insitute. Accessed January 17, 2024. https://www.cancer.gov/about-cancer/causes-prevention/genetics/
  • Michaan N, Leshno M, Cohen Y, Safra T, Peleg-Hasson S, Laskov I, Grisaru D. Preimplantation genetic testing for BRCA gene mutation carriers: a cost effectiveness analysis. Reproductive Biology and Endocrinology. 2021;19(1):153.  https://doi.org/10.1186/s12958-021-00827-9
  • Hartnett KP, Mertens AC, Kramer MR, Lash TL, Spencer JB, Ward KC, Howards PP. Pregnancy after cancer: Does timing of conception affect infant health? Cancer. 2018;124(22):4401-4407. https://doi.org/10.1002/cncr.31732
  • Buonomo B, Brunello A, Noli S, Miglietta L, Del Mastro L, Lambertini M, Peccatori FA. Tamoxifen Exposure during Pregnancy: A Systematic Review and Three More Cases. Breast Care. 2020;15(2): 148-156.  https://doi.org/10.1159/000501473
  • Braems G, Denys H, De Wever O, Cocquyt V, Van den Broecke R. Use of tamoxifen before and during pregnancy. The Oncologist. 2011;16(11):1547-51.  https://doi.org/10.1634/theoncologist.2011-0121
  • Egashira K, Hiasa K, Yokota N, Kawamura T, Matsushita T, Okugawa K, Yahata H, Sonoda K, Kato K. Infertility after abdominal trachelectomy. Acta Obstetricia et Gynecologica Scandinavica. 2018; 97(11):1358-1364. https://doi.org/10.1111/aogs.13429
  • Schimberni M, Morgia F, Colabianchi J, Giallonardo A, Piscitelli C, Giannini P, Montigiani M, Sbracia M. Natural-cycle in vitro fertilization in poor responder patients: a survey of 500 consecutive cycles. Fertility and Sterility. 2009;92(4):1297-1301. https://doi.org/10.1016/j.fertnstert.2008.07.1765
  • De Marco MP, Montanari G, Ruscito I, Giallonardo A, Ubaldi FM, Rienzi L, Costanzi F, Caserta D, Schimberni M, Schimberni M. Natural Cycle Results in Lower Implantation Failure than Ovarian Stimulation in Advanced-Age Poor Responders Undergoing IVF: Fertility Outcomes from 585 Patients. Reproductive Sciences. 2021; 28(7):1967-1973. https://doi.org/10.1007/s43032-020-00455-5
  • Chan JL, Johnson LN, Efymow BL, Sammel MD, Gracia CR. Outcomes of ovarian stimulation after treatment with chemotherapy. Journal of Assisted Reproduction and Genetics. 2015;32(10):1537-1545. https://doi.org/10.1007/s10815-015-0575-2
  • Checa Vizcaíno MA, Corchado AR, Cuadri ME, Comadran MG, Brassesco M, Carreras R. The effects of letrozole on ovarian stimulation for fertility preservation in cancer-affected women. Reproductive Biomedicine Online. 2012;24(6):606-610.  https://doi.org/10.1016/j.rbmo.2012.02.020
  • Oktay K, Türkçüoğlu I, Rodriguez-Wallberg KA. GnRH agonist trigger for women with breast cancer undergoing fertility preservation by aromatase inhibitor/FSH stimulation. Reproductive Biomedicine Online. 2010;20(6):783-788.  https://doi.org/10.1016/j.rbmo.2010.03.004
  • Azim AA, Costantini-Ferrando M, Oktay K. Safety of fertility preservation by ovarian stimulation with letrozole and gonadotropins in patients with breast cancer: a prospective controlled study. Journal of Clinical Oncology. 2008;26(16):2630-2635. https://doi.org/10.1200/JCO.2007.14.8700
  • Turan V, Bedoschi G, Moy F, Oktay K. Safety and feasibility of performing two consecutive ovarian stimulation cycles with the use of letrozole-gonadotropin protocol for fertility preservation in breast cancer patients. Fertility and Sterility. 2013;100(6):1681-5.e1.  https://doi.org/10.1016/j.fertnstert.2013.08.030
  • Rosenberg E, Fredriksson A, Einbeigi Z, Bergh C, Strandell A. No increased risk of relapse of breast cancer for women who give birth after assisted conception. Human Reproduction Open. 2019;(4): hoz039. https://doi.org/10.1093/hropen/hoz039
  • Sonigo C, Sermondade N, Calvo J, Benard J, Sifer C, Grynberg M. Impact of letrozole supplementation during ovarian stimulation for fertility preservation in breast cancer patients. European Journal of Obstetrics and Gynecology and Reproductive Biology. 2019;4:100049. https://doi.org/10.1016/j.eurox.2019.100049
  • Bonardi B, Massarotti C, Bruzzone M, Goldrat O, Mangili G, Anserini P, Spinaci S, Arecco L, Del Mastro L, Ceppi M, Demeestere I, Lambertini M. Efficacy and Safety of Controlled Ovarian Stimulation With or Without Letrozole Co-administration for Fertility Preservation: A Systematic Review and Meta-Analysis. Frontiers in Oncology. 2020;10:574669. https://doi.org/10.3389/fonc.2020.574669
  • Chian RC, Buckett WM, Tulandi T, Tan SL. Prospective randomized study of human chorionic gonadotrophin priming before immature oocyte retrieval from unstimulated women with polycystic ovarian syndrome. Human Reproduction. 2000;15(1):165-170.  https://doi.org/10.1093/humrep/15.1.165
  • Holzer H, Scharf E, Chian RC, Demirtas E, Buckett W, Tan SL. In vitro maturation of oocytes collected from unstimulated ovaries for oocyte donation. Fertility and Sterility. 2007;88(1):62-67.  https://doi.org/10.1016/j.fertnstert.2006.11.087
  • Kedem A, Yerushalmi GM, Brengauz M, Raanani H, Orvieto R, Hourvitz A, Meirow D. Outcome of immature oocytes collection of 119 cancer patients during ovarian tissue harvesting for fertility preservation. Journal of Assisted Reproduction and Genetics. 2018;35(5): 851-856.  https://doi.org/10.1007/s10815-018-1153-1
  • Park CW, Lee SH, Yang KM, Lee IH, Lim KT, Lee KH, Kim TJ. Cryopreservation of in vitro matured oocytes after ex vivo oocyte retrieval from gynecologic cancer patients undergoing radical surgery. Clinical and Experimental Reproductive Medicine. 2016;43(2):119-125.  https://doi.org/10.5653/cerm.2016.43.2.119
  • Kawamura K, Cheng Y, Kawamura N, Takae S, Okada A, Kawagoe Y, Mulders S, Terada Y, Hsueh AJ. Pre-ovulatory LH/hCG surge decreases C-type natriuretic peptide secretion by ovarian granulosa cells to promote meiotic resumption of pre-ovulatory oocytes. Human Reproduction. 2011;26(11):3094-3101. https://doi.org/10.1093/humrep/der282
  • Mohsenzadeh M, Khalili MA, Tabibnejad N, Yari N, Agha-Rahimi A, Karimi-Zarchi M. Embryo Cryopreservation Following In-Vitro Maturation for Fertility Preservation in a Woman with Mullerian Adenosarcoma: A Case Report. Journal of Human Reproductive Sciences. 2017;10(2):138-141.  https://doi.org/10.4103/jhrs.JHRS_93_16
  • Kirillova A, Bunyaeva E, Van Ranst H, Khabas G, Farmakovskaya M, Kamaletdinov N, Nazarenko T, Abubakirov A, Sukhikh G, Smitz JEJ. Improved maturation competence of ovarian tissue oocytes using a biphasic in vitro maturation system for patients with gynecological malignancy: a study on sibling oocytes. Journal of Assisted Reproduction and Genetics. 2021;38(6):1331-1340. https://doi.org/10.1007/s10815-021-02118-z
  • Sanchez F, Le AH, Ho VNA, Romero S, Van Ranst H, De Vos M, Gilchrist RB, Ho TM, Vuong LN, Smitz J. Biphasic in vitro maturation (CAPA-IVM) specifically improves the developmental capacity of oocytes from small antral follicles. Journal of Assisted Reproduction and Genetics. 2019;36(10):2135-2144. https://doi.org/10.1007/s10815-019-01551-5
  • De Roo C, Tilleman K. In Vitro Maturation of Oocytes Retrieved from Ovarian Tissue: Outcomes from Current Approaches and Future Perspectives. Journal of Clinical Medicine. 2021;10(20):4680. https://doi.org/10.3390/jcm10204680
  • Диникина Ю.В., Белогурова М.Б., Говоров И.Е., Гамзатова З.Х., Первунина Т.М., Комличенко Э.В. Криоконсервация ткани яичника у девочек с онкологической патологией: мультидисциплинарная программа. Российский журнал детской гематологии и онкологии. 2019;6(3):59-67.  https://doi.org/10.21682/2311-1267-2019-6-3-59-67
  • Абакушина Е.В., Отой Т., Каприн А.Д. Возможности восстановления репродуктивной функции онкологических больных за счет трансплантации криоконсервированной ткани яичника. Гены и клетки. 2015;10(1):18-27. 
  • Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. Journal of Reproduction and Fertility. 1987;81(2):433-442.  https://doi.org/10.1530/jrf.0.0810433
  • Dolmans MM, von Wolff M, Poirot C, Diaz-Garcia C, Cacciottola L, Boissel N, Liebenthron J, Pellicer A, Donnez J, Andersen CY. Transplantation of cryopreserved ovarian tissue in a series of 285 women: a review of five leading European centers. Fertility and Sterility. 2021;115(5):1102-1115. https://doi.org/10.1016/j.fertnstert.2021.03.008
  • Donnez J, Dolmans MM. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. Journal of Assisted Reproduction and Genetics. 2015;32(8):1167-1170. https://doi.org/10.1007/s10815-015-0544-9
  • Roness H, Meirow D. Fertility preservation: Follicle reserve loss in ovarian tissue transplantation. Reproduction. 2019;158(5):F35-F44.  https://doi.org/10.1530/REP-19-0097
  • Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertility and Sterility. 2000;74(1): 122-129.  https://doi.org/10.1016/s0015-0282(00)00548-3
  • Tanaka A, Nakamura H, Tabata Y, Fujimori Y, Kumasawa K, Kimura T. Effect of sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogels on frozen-thawed human ovarian tissue in a xenograft model. The Journal of Obstetrics and Gynaecology Research. 2018;44(10):1947-1955. https://doi.org/10.1111/jog.13726
  • Wallace WH, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS One. 2010;5(1):e8772. https://doi.org/10.1371/journal.pone.0008772
  • Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116(16):2908-2914. https://doi.org/10.1182/blood-2010-01-265751
  • Diaz-Garcia C, Domingo J, Garcia-Velasco JA, Herraiz S, Mirabet V, Iniesta I, Cobo A, Remohí J, Pellicer A. Oocyte vitrification versus ovarian cortex transplantation in fertility preservation for adult women undergoing gonadotoxic treatments: a prospective cohort study. Fertility and Sterility. 2018;109(3):478-485.e2.  https://doi.org/10.1016/j.fertnstert.2017.11.018
  • Arvold ND, Taghian AG, Niemierko A, Abi Raad RF, Sreedhara M, Nguyen PL, Bellon JR, Wong JS, Smith BL, Harris JR. Age, breast cancer subtype approximation, and local recurrence after breast-conserving therapy. Journal of Clinical Oncology. 2011;29(29): 3885-3891. https://doi.org/10.1200/JCO.2011.36.1105
  • Gellert SE, Pors SE, Kristensen SG, Bay-Bjørn AM, Ernst E, Yding Andersen C. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. Journal of Assisted Reproduction and Genetics. 2018;35(4):561-570.  https://doi.org/10.1007/s10815-018-1144-2
  • Salim N, Tumanova K, Stolbovoy A, Zvereva D, Popodko A Nosov V. Adaptive VMAT Radiotherapy to Avoid Brachytherapy in Cervical Cancer Treatment. International Journal of Radiation Oncology and Biology and Physics. 2022;114(supp 3):e262.
  • Bystrova O, Lapina E, Kalugina A, Lisyanskaya A, Tapilskaya N, Manikhas G. Heterotopic transplantation of cryopreserved ovarian tissue in cancer patients: a case series. Gynecological Endocrinology. 2019;35(12):1043-1049. https://doi.org/10.1080/09513590.2019.1648413
  • Donnez J. Chemotherapy and decline of the ovarian reserve: How can we explain it and how to prevent it? Fertility and Sterility. 2020; 114(4):722-724.  https://doi.org/10.1016/j.fertnstert.2020.08.010
  • ESHRE Guideline Group on Female Fertility Preservation; Anderson RA, Amant F, Braat D, D’Angelo A, Chuva de Sousa Lopes SM, Demeestere I, Dwek S, Frith L, Lambertini M, Maslin C, Moura-Ramos M, Nogueira D, Rodriguez-Wallberg K, Vermeulen N. ESHRE guideline: female fertility preservation. Human Reproduction Open. 2020;2020(4):hoaa052. https://doi.org/10.1093/hropen/hoaa052
  • Kindinger LM, Kyrgiou M, MacIntyre DA, Cacciatore S, Yulia A, Cook J, Terzidou V, Teoh TG, Bennett PR. Preterm Birth Prevention Post-Conization: A Model of Cervical Length Screening with Targeted Cerclage. PLoS One. 2016;11(11):e0163793. https://doi.org/10.1371/journal.pone.0163793
  • Kyrgiou M, Athanasiou A, Paraskevaidi M, Mitra A, Kalliala I, Martin-Hirsch P, Arbyn M, Bennett P, Paraskevaidis E. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: systematic review and meta-analysis. BMJ. 2016;354:i3633. https://doi.org/10.1136/bmj.i3633
  • Li X, Li J, Wu X. Incidence, risk factors and treatment of cervical stenosis after radical trachelectomy: A systematic review. European Journal of Cancer. 2015;51(13):1751-1759. https://doi.org/10.1016/j.ejca.2015.05.012
  • Kasuga Y, Ikenoue S, Tanaka M, Ochiai D. Management of pregnancy after radical trachelectomy. Gynecological Oncology. 2021; 162(1):220-225.  https://doi.org/10.1016/j.ygyno.2021.04.023
  • Šimják P, Cibula D, Pařízek A, Sláma J. Management of pregnancy after fertility-sparing surgery for cervical cancer. Acta Obstetricia et Gynecologica Scandinavia. 2020;99(7):830-838.  https://doi.org/10.1111/aogs.13917
  • Sato Y, Hidaka N, Sakai A, Kido S, Fujita Y, Okugawa K, Yahata H, Kato K. Evaluation of the efficacy of vaginal progesterone in preventing preterm birth after abdominal trachelectomy. European Journal of Obstetrics Gynecology and Reproducive Biology. 2021;259: 119-124.  https://doi.org/10.1016/j.ejogrb.2021.02.009
  • Signorello LB, Cohen SS, Bosetti C, Stovall M, Kasper CE, Weathers RE, Whitton JA, Green DM, Donaldson SS, Mertens AC, Robison LL, Boice JD Jr. Female survivors of childhood cancer: preterm birth and low birth weight among their children. Journal of National Cancer Institute. 2006;98(20):1453-1461. https://doi.org/10.1093/jnci/djj394
  • Schumer ST, Cannistra SA. Granulosa cell tumor of the ovary. Journal of Clinical Oncology. 2003;21(6):1180-1189. https://doi.org/10.1200/JCO.2003.10.019
  • Spanos CP, Mamopoulos A, Tsapas A, Syrakos T, Kiskinis D. Female fertility and colorectal cancer. International Journal of Colorectal Diseases. 2008;23(8):735-743.  https://doi.org/10.1007/s00384-008-0483-3
  • Lopategui DM, Yechieli R, Ramasamy R. Oncofertility in sarcoma patients. Translational Andrology and Urology. 2017;6(5):951-958.  https://doi.org/10.21037/tau.2017.07.03
  • Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline. Fertility and Sterility. 2013;99(1):37-43.  https://doi.org/10.1016/j.fertnstert.2012.09.028
  • Ахмедова З.Б., Умарова С.Г., Ашурова М.Дж. Фертильность и лимфома Ходжкина. Вестник Авиценны. 2013;(2):167-172. 
  • Hodgson DC, Pintilie M, Gitterman L, Dewitt B, Buckley CA, Ahmed S, Smith K, Schwartz A, Tsang RW, Crump M, Wells W, Sun A, Gospodarowicz MK. Fertility among female hodgkin lymphoma survivors attempting pregnancy following ABVD chemotherapy. Hematological Oncology. 2007;25(1):11-15.  https://doi.org/10.1002/hon.802
  • Watson M, Wheatley K, Harrison GA, Zittoun R, Gray RG, Goldstone AH, Burnett AK. Severe adverse impact on sexual functioning and fertility of bone marrow transplantation, either allogeneic or autologous, compared with consolidation chemotherapy alone: analysis of the MRC AML 10 trial. Cancer. 1999;86(7):1231-1239. https://doi.org/10.1002/(sici)1097-0142(19991001)86:7<1231::aid-cncr18>3.0.co;2-y
  • Подтверждение e-mail

    На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

    Подтверждение e-mail

    Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.