Актуальность
Эндогенный гиперкортицизм проявляется поражением многих органов и тканей, обусловленным длительным воздействием на организм избыточного количества кортикостероидов [1]. В этиологии эндогенного гиперкортицизма преобладает АКТГ-зависимый гиперкортицизм (болезнь Иценко–Кушинга – 60–70% случаев, АКТГ-эктопический синдром – 5–10%), тогда как на долю первичного поражения надпочечников (синдром Иценко–Кушинга, СИК) приходится 20–30% случаев [2]. В структуре СИК выделяют одностороннее [аденома надпочечника (75–90%) или адренокортикальный рак (<5%)] и двустороннее поражение надпочечников (10%) [3]. Двустороннюю гиперплазию надпочечников (ДГН) подразделяют в зависимости от размера узлов (макронодулярная при размере узлов более 1 см и микронодулярная), а также по наличию или отсутствию пигментации при морфологическом исследовании. Среди вариантов ДГН выделяют: первичную двустороннюю макронодулярную гиперплазию надпочечников (ПДМГН, primary bilateral macronodular adrenal hyperplasia, PBMAH), первичное пигментное нодулярное поражение надпочечников (primary pigmented nodular adrenocortical disease, PPNAD) и изолированное микронодулярное поражение надпочечников (isolated micronodular adrenocortical disease, iMAD) [4].
Сигнальный путь цАМФ – протеинкиназа, А (ПКА) играет важную роль в развитии, пролиферации и функции клеток коры надпочечников. Нарушения в различных компонентах этого сигнального пути могут приводить к развитию СИК. Среди редких синдромов, связанных с мутациями в компонентах цАМФ–ПКА сигнального пути, выделяют: синдром Мак-Кьюн–Олбрайта (постзиготические активирующие мутации в гене GNAS, кодирующем Gsα субъединицу), в рамках которого развивается первичное биморфное заболевание коры надпочечников (primary bimorphic adrenocortical disease); Карни комплекс (герминальные инактивирующие мутации в гене PRKAR1A, кодирующем регуляторную R1α субъединицу ПКА) с возможным развитием PPNAD. Кроме того, инактивирующие герминальные мутации в генах фосфодиэстераз (ферментов, связывающих и инактивирующих цАМФ) (PDE11A и PDE8B) были описаны как при ПДМГН, так и при PPNAD и iMAD [4]. Соматические активирующие мутации в гене, кодирующем каталитическую субъединицу ПКА (PRKACA), были обнаружены в 40% кортикостером [5]. В последнее десятилетие описано несколько пациентов с ДГН и СИК с герминальным увеличением числа копий гена PRKACA [5]. Также был описан единичный случай активирующей мутации в гене рецептора АКТГ (MC2R) у пациента с ПДМГН [6].
При ПДМГН выявлены генетические дефекты, ассоциированные с другими сигнальными путями, помимо цАМФ–ПКА. ПДМГН крайне редко может быть компонентом синдрома множественных эндокринных неоплазий 1 типа, обусловленного мутациями в гене MEN1; семейного аденоматозного полипоза, обусловленного мутациями в гене APC; наследственного лейомиоматоза и почечно-клеточного рака [hereditary leiomyomatosis and renal cell carcinoma (HLRCC), обусловленного мутациями в гене фумаратгидратазы (FH) [5].
В 2013 г. G. Assie и соавт. выявили новый ген, ответственный за развитие СИК вследствие ПДМГН. При исследовании 33 пациентов с ПДМГН и СИК, мутации в гене ARMC5 были обнаружены в 18 случаях (55%) [7]. Во всех узлах выявлялись герминальные мутации в гене, при этом «выключение» второго аллеля различалось в разных узлах: соматические мутации были выявлены в 68% случаев, потеря гетерозиготности (LOH) – в 32% [7], что свидетельствует о том, что ARMC5 является геном-супрессором опухолевого роста. В двух других исследованиях было показано, что мутации в гене ARMC5 встречаются в 25% случаев ПДМГН [8, 9]. Этот ген расположен на хромосоме 16p11.2 и кодирует белок Armadillo repeat containing 5, функции которого не изучены [4]. Влияние на апоптоз миссенс-мутаций в гене ARMC5 изучалось на линиях клеток адренокортикального рака H295R [10]. Было показано, что инактивирующие мутации в гене ARMC5 приводят к утрате способности клеток коры надпочечников индуцировать апоптоз, что может объяснять крупные размеры надпочечников при ПДМГН [10].
Примечательно, что гиперсекреция кортизола при ПДМГН не является истинно АКТГ-независимой, поскольку опухолевые клетки продуцируют АКТГ, который оказывает пара- и аутокринное воздействие на секрецию кортизола [11].
Таким образом, ПДМГН – редкая, генетически гетерогенная причина развития эндогенного гиперкортицизма, в 25–55% случаев обусловленная инактивирующими мутациями в гене ARMC5. Ниже описан случай наследственного СИК в результате ПДМГН, обусловленного мутацией в гене ARMC5.
Описание случая
Пациентка Ю., 37 лет, впервые поступила в отделение нейроэндокринологии и остеопатий ФГБУ «НМИЦ эндокринологии» Минздрава России в сентябре 2016 г. с жалобами на избыточный вес, повышение АД до 160/110 мм. рт.ст., нечистоту кожи, нерегулярный менструальный цикл. Вышеперечисленные жалобы возникли около трех лет назад. При обследовании по месту жительства летом 2016 г. заподозрен эндогенный гиперкортицизм. Результаты лабораторного обследования представлены в таблице.
Гормональный анализ по месту жительства: альдостерон – 80 пг/мл (норма до 392), ренин 10,4 мкМЕд/мл (до 46,1), метанефрин в плазме 16,3 пг/мл (до 30), норметанефрин в плазме 98,2 пг/мл (до 190). Также отмечалось повышение уровня ПТГ до 7,79 пмоль/л (до 6,9).
Мать пациентки в 2003 г. в 45-летнем возрасте проходила обследование в отделении нейроэндокринологии ЭНЦ РАМН, где у нее был диагностирован СИК тяжелого течения. По данным выписного эпикриза, на фоне приема аминоглутетимида (500 мг/сут)уровень АКТГ в 08:00 – 8,4 пг/мл, в 23:00 – 9,5 пг/л; уровень кортизола на фоне ночного подавляющего теста с 1 мг дексаметазона – 249 нмоль/л. При УЗИ – множественные опухоли обоих надпочечников, МРТ-картина с наибольшей вероятностью соответствовала макронодулярной гиперплазии надпочечников. В декабре 2003 г. была выполнена левосторонняя адреналэктомия, в феврале 2004 г. – правосторонняя адреналэктомия.
При обследовании в отделении нейроэндокринологии и остеопатий в сентябре 2016 г. у пациентки Ю. был подтвержден АКТГ-независимый эндогенный гиперкортицизм (см. таблицу). В биохимическом анализе крови: калий – 4,5 ммоль/л (3,5–5,1), глюкоза – 4,42 ммоль/л, холестерин – 7,8 ммоль/л (3,3–5,2). В суточной моче метанефрин – 194 мкг (25–312), норметанефрин – 347 мкг (35–445). По данным МСКТ: надпочечники обычно расположены, с четкими неровными контурами. Оба надпочечника деформированы, неравномерно утолщены. Структура неоднородная за счет многочисленных объемных образований округлой и овальной формы, размером от 12 до 36 мм. Наиболее крупные образования расположены в латеральной ножке левого надпочечника (до 33 мм) и в латеральной ножке правого надпочечника (до 28 и 36 мм). Контуры образований четкие, ровные. Структура однородная. Плотность их по фазам составляет: нативная фаза – артериальная фаза – венозная фаза – отсроченная фаза: 13–37–74–38 ед.Н. Размер правого надпочечника (медиальная ножка–латеральная ножка–тело): 12–20–14 мм. Размер левого надпочечника: 18–22–10 мм. Длина правого надпочечника, включая ножки и тело, – 9,3 см, левого – 8,9 см. (рис. 1, 2).
В связи с анамнестическими данными о повышении уровня ПТГ был исследован уровень общего кальция и выявлено его повышение [2,56 ммоль/л (2,15–2,55)]. При повторном исследовании: кальций общий – 2,61 ммоль/л, кальций ионизированный – 1,24 ммоль/л (1,03–1,29). Уровень ПТГ также оказался повышенным [70,44 пг/мл (15–65)], что подтверждало наличие ПТГ-зависимой гиперкальциемии. При УЗИ выявлены признаки гиперплазии правой верхней околощитовидной железы 0,8×0,5×0,3 см. Учитывая отсутствие нефролитиаза (по данным УЗИ) и снижения минеральной плотности костей (по данным денситометрии), сформулирован диагноз «Первичный гиперпаратиреоз, мягкая форма. Аденома правой верхней околощитовидной железы». В выписном эпикризе матери пациентки от 2003 г. имелись данные об уровне ионизированного кальция – 1,24 ммоль/л (1,03–1,29), однако сведения об уровне общего кальция и ПТГ отсутствовали.
В отделении хирургии ФГБУ «НМИЦ эндокринологии» пациентке Ю. проведена люмболапаротомия слева, левосторонняя адреналэктомия с опухолью, спустя неделю – торакофренолапаротомия справа, правосторонняя адреналэктомия с опухолью. В послеоперационном периоде назначена заместительная терапия гидрокортизоном (суммарная доза 40 мг/сут) и флудрокортизоном (0,05 мг/сут). Послеоперационный период протекал без осложнений. При макроскопическом исследовании: правый надпочечник весом 57,0 г, размером 10,5×5,5×3,0 см, левый – весом 77,0 г, размером 7,0×10,0×3,5 см. Поверхность их крупнобугристая. На разрезе оба представлены охряно-желтыми узлами диаметром от 0,5 до 3,0 см (рис. 3, см.
При повторной госпитализации в отделение нейроэндокринологии и остеопатий в феврале 2018 г. диагностирована медикаментозная компенсация хронической надпочечниковой недостаточности на фоне приема гидрокортизона в суточной дозе 30 мг, флудрокортизона в дозе 0,05 мг. После операции у пациентки нормализовались менструальный цикл и АД, снизился вес на 12 кг. Как при амбулаторном обследовании, так и во время повторной госпитализации, сохранялась гиперкальциемия (кальций общий – 2,68–2,78 ммоль/л, кальций ионизированный – 1,22–1,28 ммоль/л) при уровне ПТГ ближе к верхней границе нормы – 54,95 пг/мл. По данным УЗИ, сохранялась гиперплазия правой верхней околощитовидной железы. Рекомендовано динамическое наблюдение.
Учитывая семейный анамнез (наличие СИК как следствие ПДМГН у матери), для уточнения генетической причины заболевания было проведено секвенирование экзома. Геномную ДНК из лимфоцитов периферической крови выделяли с помощью набора PureLink Genomic DNA Mini Kit, согласно инструкциям производителя (Thermo Fisher Scientific, США). Ультразвуковая фрагментация ДНК проводилась на приборе Covaris S220 (Covaris, США). Пробоподготовка библиотек для секвенирования и экзомное обогащение выполнены с использованием набора TruSeq DNA Exome, согласно инструкциям производителя (Illumina, США). Парно-концевое чтение полученных библиотек (2×80 п.н.) проводилось на секвенаторе NextSeq550 (Illumina, США). Для первичного биоинформатического анализа данных использованы программные инструменты bwa, Picard, Genome Analysis ToolKit (GATK). Аннотация выявленных вариантов проводилась с помощью программного пакета ANNOVAR [12]. Выявлен герминальный гетерозиготный вариант в экзоне 6 гена ARMC5 p. R898W (c.2692C>T, референсная последовательность NM_001105247), предсказанный патогенным по in silico алгоритмами SIFT, POLYPHEN2-HDIV, POLYPHE2-HVAR, Mutationtaster. Частота аллеля в популяции, по данным Genome Aggregation Database (http://gnomad.broadinstitute.org), 0,000009825.
Обсуждение
ПДМГН, приводящую к развитию СИК, обычно диагностируют на пятом или шестом десятилетии жизни. Среди пациентов с ПДМГН преобладают женщины, что характерно и для других форм СИК. Истинная распространенность ПДМГН в популяции неизвестна [5]. В представленном нами случае ПДМГН была диагностирована в возрасте 37 лет у пробанда и в возрасте 45 лет у матери, что согласуется с данными литературы. S. Espiard и соавт. сравнивали пациентов с СИК и ПДМГН с мутациями и без мутаций в гене ARMC5. У пациентов с мутациями в этом гене при морфологическом исследовании выявлялось значимо большее количество узлов в надпочечниках, вес надпочечников был существенно больше [10]. У пациентов с мутациями в ARMC5 чаще выявлялся манифестный, а не субклинический СИК, был ниже уровень АКТГ, выше вечерний уровень кортизола в крови, свободного кортизола в суточной моче и подъем содержания кортизола на фоне ночного подавляющего теста с дексаметазоном [10]. Учитывая данные о влиянии мутаций в гене ARMC5 на апоптоз, предполагается, что гиперплазия надпочечников и формирование узлов происходят прогрессивно, но медленно ввиду доброкачественности опухолевого процесса при ПДМГН. Когда масса надпочечников достигает достаточной критической величины, АКТГ-независимый синтез кортизола приводит к явному эндогенному гиперкортицизму. Это может объяснять тот факт, что СИК при ПДМГН развивается достаточно поздно (в зрелом возрасте) [5].
ПДМГН является генетически гетерогенным заболеванием. Гены, мутации в которых выявлены при ПДМГН, включают: ARMC5, MEN1, FH, PDE11A, PDE8B, GNAS, APC, MC2R, PRKACA [4]. До открытия гена ARMC5 мутации в остальных генах объясняли развитие лишь единичных случаев. Исследования последних лет показали, что наиболее частой причиной развития ПДМГН являются инактивирующие мутации в гене ARMC5, кодирующем белок Armadillo repeat-containing 5. К 2015 г. в литературе было описано 29 герминальных и 32 соматических мутации в гене ARMC5 [5]. Среди герминальных мутаций преобладали миссенс-мутации (44,8%); нонсенс-мутации встречались в 24,1%, мутации со сдвигом рамки считывания – в 27,6%, делеции – в 3,4% случаев [5]. Некоторые из этих мутаций были найдены в нескольких неродственных случаях: p. I58Nfs44* [8, 9], p. R267X [7, 8, 10], p. R593W [8, 13], p. R898W [7, 8, 10] и p. A106Rfs31* [10, 14]. В целом мутации в гене ARMC5 распределены равномерно по всей нуклеотидной последовательности, и в настоящее время «горячих точек» для мутаций не выявлено. Найденная нами мутация была описана ранее в литературе [7, 8, 10]. В России мутация в гене ARMC5 описывается впервые.
У нашей пациентки был выявлен также первичный гиперпаратиреоз, что клинически могло соответствовать синдрому МЭН 1 типа. Однако при секвенировании экзома патогенных вариантов в гене MEN1 выявлено не было. В литературе описаны случаи менингиом у пациентов с мутациями в гене ARMC5 [9, 14], однако данные о развитии аденом околощитовидных желез у таких пациентов нами найдены не были. Вопрос о роли мутаций в гене ARMC5 в развитии опухолей околощитовидных желез остается открытым.
Заключение
ПДМГН является редкой причиной развития эндогенного гиперкортицизма. Наиболее часто при ПДМГН выявляют инактивирующие мутации в гене-супрессоре опухолевого роста ARMC5, тем не менее, около ½–¾ пациентов с СИК и ПДМГН, не отобранные по тяжести СИК или по наличию или отсутствию отягощенного семейного анамнеза, не имеют мутаций в известных генах. Применение полноэкзомного секвенирования может быть оправдано при ПДМГН ввиду генетической гетерогенности заболевания. Могут ли мутации в гене ARMC5 предрасполагать к развитию других опухолей, еще предстоит выяснить.
Дополнительная информация
Дополнительные материалы к статье
Источник финансирования. Молекулярно-генетическое исследование выполнено в рамках государственного задания «Наследственные опухолевые синдромы и множественные эндокринные неоплазии: персонализация диагностики и лечения, прогнозирование рисков, идентификация ядерных семей».
Согласие пациента. Пациентка добровольно подписала информированное согласие на публикацию персональной медицинской информации в обезличенной форме в журнале «Проблемы эндокринологии».
Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
Участие авторов. Е.О. Мамедова – анализ литературных данных, написание текста статьи; Е.В. Васильев – биоинформатический анализ данных секвенирования экзома; В.М. Петров – проведение секвенирования экзома; Н.С. Измайлова – проведение морфологического исследования надпочечников; С.А. Бурякина – проведение и описание МСКТ надпочечников; Л.Я. Рожинская – редактирование текста статьи; А.Н. Тюльпаков – биоинформатический анализ данных секвенирования экзома, редактирование текста статьи; Ж.Е. Белая – окончательное редактирование текста статьи. Все авторы внесли существенный вклад в подготовку статьи, прочли и одобрили финальную версию до публикации.
Сведения об авторах
*Мамедова Елизавета Октаевна, к.м.н. [Elizaveta O. Mamedova, MD, PhD]; адрес: Россия, 117036 Москва, ул. Дмитрия Ульянова, д.11 [address: 11 Dm.Ulyanova street, Moscow 117036, Russia]; ORCID: https://orcid.org/0000-0002-9783-3599; eLibrary SPIN: 3904-6017; e-mail: lilybet@mail.ru
Васильев Евгений Витальевич, к.б.н. [Evgeny V. Vasilyev, PhD]; ORCID: https://orcid.org/0000-0003-1107-362X; eLibrary SPIN: 5767-1569; e-mail: vas-evg@yandex.ru
Петров Василий Михайлович, к.х.н. [Vasily M. Petrov, PhD]; ORCID: https://orcid.org/0000-0002-0520-9132; eLibrary SPIN: 4358-2147; e-mail: petrov.vasily@gmail.com
Измайлова Наталья Сергеевна, к.м.н. [Natalya S. Izmailova, MD, PhD]; ORCID: https://orcid.org/0000-0002-4713-5661; eLibrary SPIN: 1984-1519; e-mail: nizm2013@mail.ru
Бурякина Светлана Алексеевна, к.м.н. [Svetlana A. Buryakina, MD, PhD]; ORCID: https://orcid.org/0000-0001-9065-7791; eLibrary SPIN: 5675-0651; e-mail: sburyakina@yandex.ru
Рожинская Людмила Яковлевна, д.м.н., профессор [Liudmila Ya. Rozhinskaya, MD, PhD, Professor]; ORCID: https://orcid.org/0000-0001-7041-0732; eLibrary SPIN: 5691-7775; e-mail: lrozhinskaya@gmail.com
Тюльпаков Анатолий Николаевич, д.м.н. [Anatoly N. Tiulpakov, MD, PhD]; ORCID: https://orcid.org/0000-0001-8500-4841; eLibrary SPIN: 8396-1798; e-mail: anatolytiulpakov@gmail.com
Белая Жанна Евгеньевна, д.м.н. [Zhanna E. Belaya, MD, PhD]; ORCID: https://orcid.org/0000-0002-6674-6441; eLibrary SPIN: 4746-7173; e-mail: jannabelaya@gmail.com