Недостаточность 3-гидрокси-ацил-КоА-дегидрогеназы длинноцепочечных жирных кислот: клинический случай

Авторы:
  • Е. Б. Храмова
    ФГБОУ ВО «Тюменский государственный медицинский университет» Минздрава России, Тюмень, Россия
  • Е. Ю. Хорошева
    ФГБОУ ВО «Тюменский государственный медицинский университет» Минздрава России, Тюмень, Россия
  • О. В. Перфилова
    ГБУЗ ТО «Областная клиническая больница №1», Тюмень, Россия
Журнал: Проблемы эндокринологии. 2018;64(3): 160-162
Просмотрено: 2435 Скачано: 327

В последние годы благодаря современным технологиям молекулярно-генетической диагностики расширяются представления о наследственных заболеваниях, среди которых одно из самых значительных мест занимают наследственные болезни обмена веществ. В настоящее время эта группа включает около 700 различных заболеваний, каждое из которых в отдельности является редким или крайне редким, что может явиться причиной поздней диагностики и отсроченной терапии.

Большинство наследственных болезней обмена веществ обусловлено дефектом единичных генов, кодирующих ферменты, которые обеспечивают превращение одних веществ (субстратов) в другие (продукты). В результате накапливаются вещества, обладающие токсическим действием или нарушающие синтез жизненно важных соединений.

Дефицит 3-гидрокси-ацил-КоА-дегидрогеназы жирных кислот с длинной углеродной цепью — наследственное заболевание из группы дефектов митохондриального β-окисления жирных кислот. Частота среди новорожденных в странах Европы и США составляет 1:30 000—1:50 000. В Российской Федерации частота заболевания не определена.

В его основе лежит мутация гена, кодирующего фермент 3-гидрокси-ацил-КоА-дегидрогеназу жирных кислот с длинной углеродной цепью (локализация гена — 17р13, тип наследования — аутосомно-рецессивный). Этот фермент участвует в митохондриальном β-окислении жирных кислот, углеродная цепь которых содержит 14—20 атомов. Ферментативный дефект обусловливает резкое снижение кетогенеза, накопление жирных кислот с длинной цепью, активацию процессов ω-окисления с повышенным образованием дикарбоновых кислот. Последние негативно влияют на ткани головного мозга, сердца и печени, ингибируют ряд ферментов, в частности ферменты глюконеогенеза [1, 4].

Запуск указанных процессов происходит при интеркуррентных инфекционных заболеваниях, голодании или приеме жирной пищи и др. В подобных обстоятельствах необходимым источником восполнения энергетических потребностей организма становятся липиды. Однако при наличии генетически детерминированного ферментативного дефекта активация катаболизма жирных кислот стимулирует образование токсичных метаболитов. Это ведет к метаболическому ацидозу, гипераммониемии и усугублению гипогликемии. На связывание токсичных производных жирных кислот расходуются запасы эндогенного карнитина с образованием ацилкарнитинов, в результате чего развивается вторичная карнитиновая недостаточность.

Лабораторная диагностика дефицита 3-гидрокси-ацил-КоА-дегидрогеназы жирных кислот с длинной углеродной цепью основана на определении содержания в крови тетрадеценоилкарнитина и тетрадеканоилкарнитина (С14:1 и С14), свободного карнитина (С0) методом тандемной масс-спектрометрии. Для подтверждения диагноза и медико-генетического консультирования проводится молекулярное исследование гена ACADVL [2].

Описание случая

Мальчик А., возраст 9 мес, житель Курганской области, госпитализирован в детское отделение ГБУЗ ТО «ОКБ № 1» Тюмени с жалобами на выраженную мышечную слабость, периодические рвоты до 3 раз в сутки, отставание в физическом и статико-моторном развитии. Из анамнеза известно, что ребенок родился от первой беременности на фоне угрозы невынашивания, отеков, вызванных беременностью, на сроке гестации 37—38 нед с массой тела 2700 г, длиной 48 см. Ребенок с рождения на грудном вскармливании. С 4 мес — периодическая рвота, однократно — судороги (гликемия 1,4 ммоль/л без уточнения причины). При повторных определениях гликемия 3,0—5,0 ммоль/л. С 6 мес рвота до 3 раз в сутки. В 7 мес диагностирован хронический гепатит цитомегаловирусной этиологии (АСТ 160 Ед/л, АЛТ 280 Ед/л, диффузные изменения эхогенности печени), по поводу которого ребенок принимал преднизолон. К 9-му месяцу мама отмечает неврологический регресс: голову не удерживает, не переворачивается, не сидит.

Результаты физикального, лабораторного и инструментального исследования

При осмотре: состояние тяжелое, ребенок вялый, сонливый. В сознании. Обращает внимание «кукольное» лицо, наличие эпиканта, длинные ресницы. Не сидит, голову не удерживает, диффузная мышечная гипотония, «поза лягушки». Рвота ежедневно до 3—4 раз. Белково-энергетическая недостаточность (SDS ИМТ –2,8). Очаговой неврологической симптоматики нет, менингельные знаки отрицательные. ЧДД 32 в 1 мин, St O2 98—99%. Систолический шум на верхушке сердца, ЧСС 130 уд/мин. Гепатомегалия. Цвет мочи не изменен. При поступлении гликемия 2,5 ммоль/л, повышение уровня лактата, креатинфосфокиназы, аминотрансфераз в крови.

Ребенку проведен комплекс лабораторных и инструментальных исследований, исключены пороки развития желудочно-кишечного тракта, эндокринопатии, дегенеративные заболевания нервной системы. При проведении тандемной масс-спектрометрии (лаборатория наследственных болезней обмена веществ ФГБНУ «Медико-генетический научный центр», зав. лаб. — к.м.н. Е.Ю. Захарова) выявлено критическое снижение уровня карнитина, повышение концентрации длинноцепочечных 3-гидрокси-ацилкарнитинов. При молекулярно-генетическом исследовании, выполненном в той же лаборатории, в гене HADHA обнаружена мутация в гомозиготном состоянии p. Glu474Gln. Таким образом, верифицирован диагноз: недостаточность 3-гидрокси-ацил-КоА-дегидрогеназы длинноцепочечных жирных кислот (недостаточность митохондриального трифункционального белка).

Нутритивная коррекция начата пациенту до получения результатов молекулярно-генетического исследования. Расчетная ценность пищевого рациона — 100 ккал/кг, содержание жиров в рационе — не более 20%. Исключены молочные и кисломолочные продукты, в том числе грудное молоко и стандартные детские молочные смеси; растительные жиры, богатые жирными кислотами с очень длинной цепью (подсолнечное, рапсовое, кукурузное масла); ограничено мясо. В качестве источника среднецепочечных триглицеридов назначен ликвиджен. Промежутки между кормлениями 2,5 ч, обязательные ночные кормления.

С целью усиления связывания метаболитов жирных кислот и ликвидации карнитиновой недостаточности назначен карнитин в стартовой дозе 20 мг/кг в 3 приема.

В течение 1-го месяца патогенетической и симптоматической терапии состояние ребенка удовлетворительное, улучшение неврологической симптоматики, положительная весовая кривая. В 1 год 2 мес — ходит у опоры, индекс массы тела в пределах 25-й процентили. В 1 год 10 мес нервно-психическое развитие соответствует эпикризному периоду.

Обсуждение

Для недостаточности митохондриального трифункционального белка характерны различные клинические формы. Неонатальная кардиомиопатическая форма манифестирует тяжелой гипертрофической кардиомиопатией и имеет неблагоприятный прогноз. Наиболее частая неонатальная форма с поражением печени дебютирует в 1-е сутки/месяцы жизни. Манифестирует повторными приступами рвоты, сопровождающимися вялым сосанием или отказом от пищи, мышечной гипотонией, гепатомегалией, гипо- или арефлексией, тахипноэ, летаргией, комой. Форма с поздней манифестацией (в 10—20 лет) характеризуется поражением скелетных мышц [2].

Заключение

Обследованию на дефицит 3-гидрокси-ацил-КоА-дегидрогеназы жирных кислот с длинной углеродной цепью подлежат следующие группы детей:

— дети любого возраста из семей, имеющих больных с данным заболеванием (в первую очередь братья и сестры больного) или имеющих случаи внезапной детской смерти;

— дети первых дней/недель и месяцев жизни с гипогликемией, ацидозом, приступами рвоты и судорог, поражением сердца и печени;

— дети любого возраста с повторными приступами рвоты, гипотонии, поражением сердца и печени;

— дети старшего возраста и взрослые с непереносимостью физической нагрузки, приступами боли в мышцах, рабдомиолизом, миоглобинурией.

Стратегия лечения пациентов с наследственным дефектом 3-гидрокси-ацил-КоА-дегидрогеназы жирных кислот с длинной углеродной цепью заключается в снижении потребности больного в липидах как резервной составляющей тканевой биоэнергетики, минимизации катаболизма жирных кислот и уменьшении их значимости для восполнения энергозатрат клетки с обеспечением нормальных процессов анаболизма, роста и нутритивного статуса [2, 3, 5].

Прогноз состояния и уровня психического развития пациентов зависит от тяжести заболевания, степени поражения внутренних органов и нервной системы, сроков начала лечения и эффективности интенсивной терапии при метаболической декомпенсации [5].

Дополнительная информация

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Согласие пациента. Авторы получили письменное согласие законного представителя пациента на публикацию медицинских данных в рамках настоящей статьи.

Сведения об авторах

*Храмова Елена Борисовна, д.м.н. [Elena B. Khramova, MD, PhD, assistant professor]; адрес: Россия, 625000, Тюмень, ул. Харьковская 47/2-24 [address: 47/2-24 Kharkovskaya street, Tyumen, 625000, Russia]; телефон: +7 (912) 387 00 00; ORCID: http://orcid.org/0000-0001-8968-3925, e-mail: doctor.khramova@gmail.com SPIN-код: 2462-3440

Хорошева Елена Юрьевна, к.м.н. [Elena Yu. Khorosheva, MD, PhD]; ORCID: http://orcid.org/0000-0002-6940-1588,

e-mail: khorosheva@ pisem.net, SPIN-код: 9975-3886.

Перфилова Ольга Владимировна [Olga V. Perfilova, MD]; ORCID: http://orcid.org/0000-0001-7416-7485; SPIN-код: 7496-1692;

email: cova_1976@mail.ru

Список литературы:

  1. Al-Thihli K, Sinclair G, Sirrs S, et al. Performance of serum and dried blood spot acylcarnitine profiles for detection of fatty acid beta-oxidation disorders in adult patients with rhabdomyolysis. JÂ Inherit Metab Dis. 2014;37(2):207-213. doi:10.1007/s10545-012-9578-7
  2. Berardo A, DiMauro S, Hirano M. A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep. 2010;10(2):118-126. doi:10.1007/s11910-010-0096-4
  3. Diekman EF, van Weeghel M, Wanders RJ, et al. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models. FASEB J. 2014;28(7):2891-2900. doi:10.1096/fj.14-250241
  4. Oliveira SF, Pinho L, Rocha H, et al. Rhabdomyolysis as a presenting manifestation of very long-chain acyl-coenzyme a dehydrogenase deficiency. Clin Pract. 2013;3(2):e22. doi:10.4081/cp.2013.e22
  5. Tenopoulou M, Chen J, Bastin J, et al. Strategies for correcting very long chain acyl-CoA dehydrogenase deficiency. J Biol Chem. 2015;290(16):10486-10494. doi:10.1074/jbc.M114.635102