The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Akhmatova E.A.

I.I. Mechnikov Research Institute of Vaccines and Serums;
Institute of Organic Chemistry of the Russian Academy of Sciences

Sorokina E.V.

I.I. Mechnikov Research Institute of Vaccines and Serums, Russian Academy of Medical Sciences;
Department of skin and venereal diseases with cosmetology course Federal state budgetary educational institution of additional professional education Institute of advanced training of Federal medical and biological Agency

Current experimental models of psoriasis

Authors:

Akhmatova E.A., Sorokina E.V.

More about the authors

Read: 2486 times


To cite this article:

Akhmatova EA, Sorokina EV. Current experimental models of psoriasis. Russian Journal of Clinical Dermatology and Venereology. 2022;21(6):738‑743. (In Russ.)
https://doi.org/10.17116/klinderma202221061738

Recommended articles:
Psoriasis in pregnant women. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(5):517-524
New aspe­cts of psoriasis pathogenesis: meta­bolomic profiling in dermatology. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(5):526-531
Psoriasis: analysis of como­rbid pathology. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(1):16-21
Search of diagnostic and prognostic biomarkers of immu­noinflammatory dermatoses by means of flow cyto­metry. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(2):170-177
Nucleotide sequence variants in IL4 and TNFA genes in patients with dermatoses and xero­sis. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(2):178-184
Historical aspe­cts and prospects of psoriasis treatment. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(3):284-292
Key specific tools for asse­ssment of life quality of patients with psoriasis. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(3):319-325
Psychodermatological aspe­cts of psoriasis, current condition of problem. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(4):403-411
Animal expe­rimental models in the study of age-dependent cere­bral microangiopathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3-2):57-68

References:

  1. Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. A systematic review of worldwide epidemiology of psoriasis. Journal of the European Academy of Dermatology and Venereology. 2017;31(2):205-212.  https://doi.org/10.1111/jdv.13854
  2. Schön MP. Adaptive and Innate Immunity in Psoriasis and Other Inflammatory Disorders. Frontiers in immunology. 2019;10:1764. https://doi.org/10.3389/fimmu.2019.01764
  3. Schön MP, Manzke V, Erpenbeck L. Animal models of psoriasis-highlights and drawbacks. The Journal of allergy and clinical immunology. 2021;147(2): 439-455.  https://doi.org/10.1016/j.jaci.2020.04.034
  4. Rendon A, Schäkel K. Psoriasis Pathogenesis and Treatment. International journal of molecular sciences. 2019;20(6):1475. https://doi.org/10.3390/ijms20061475
  5. Bocheńska K, Smolińska E, Moskot M, Jakóbkiewicz-Banecka J, Gabig-Cimińska M. Models in the Research Process of Psoriasis. International journal of molecular sciences. 2017;18(12):2514. https://doi.org/10.3390/ijms18122514
  6. Jayo MJ, Zanolli MD, Jayo JM. Psoriatic plaques in Macaca fascicularis. Veterinary pathology. 1988;25(4):282-285.  https://doi.org/10.1177/030098588802500406
  7. Chuang SY, Lin CH, Sung CT, Fang JY. Murine models of psoriasis and their usefulness for drug discovery. Expert opinion on drug discovery. 2018; 13(6):551-562.  https://doi.org/10.1080/17460441.2018.1463214
  8. Schneider MR. Fifty years of the asebia mouse: origins, insights and contemporary developments. Experimental dermatology. 2015;24(5):340-341.  https://doi.org/10.1111/exd.12664
  9. Brown WR, Hardy MH. A hypothesis on the cause of chronic epidermal hyperproliferation in asebia mice. Clinical and experimental dermatology. 1988; 13(2):74-77.  https://doi.org/10.1111/j.1365-2230.1988.tb00661.x
  10. Vandeghinste N, Klattig J, Jagerschmidt C, Lavazais S, Marsais F, Haas JD, Auberval M, Lauffer F, Moran T, Ongenaert M, Van Balen M, Dupont S, Lepescheux L, Garcia T, Härtle S, Eyerich K, Fallon PG, Brys R, & Steidl S. Neutralization of IL-17C Reduces Skin Inflammation in Mouse Models of Psoriasis and Atopic Dermatitis. The Journal of investigative dermatology. 2018;138(7):1555-1563. https://doi.org/10.1016/j.jid.2018.01.036
  11. Douglas T, Champagne C, Morizot A, Lapointe JM, Saleh M. The Inflammatory Caspases-1 and -11 Mediate the Pathogenesis of Dermatitis in Sharpin-Deficient Mice. Journal of immunology. 2015;195(5):2365-2373. https://doi.org/10.4049/jimmunol.1500542
  12. Nüesch U, Mauracher AA, Opitz L, Volkmer B, Michalak-Mićka K, Kamarashev J, Hartwig T, Reichmann E, Becher B, Vavassori S, Pachlopnik Schmid J. Epithelial proliferation in inflammatory skin disease is regulated by tetratricopeptide repeat domain 7 (Ttc7) in fibroblasts and lymphocytes. The Journal of allergy and clinical immunology. 2019;143(1):292-304.e8.  https://doi.org/10.1016/j.jaci.2018.02.057
  13. Potter CS, Wang Z, Silva KA, Kennedy VE, Stearns TM, Burzenski L, Shultz LD, Hogenesch H, Sundberg JP. Chronic proliferative dermatitis in Sharpin null mice: development of an autoinflammatory disease in the absence of B and T lymphocytes and IL4/IL13 signaling. PLoS One. 2014;9(1): e85666. https://doi.org/10.1371/journal.pone.0085666
  14. Nakajima K, Sano S. Mouse models of psoriasis and their relevance. Journal of dermatology. 2018;45(3):252-263.  https://doi.org/10.1111/1346-8138.14112
  15. Harden JL, Krueger JG, Bowcock AM. The immunogenetics of Psoriasis: A comprehensive review. Journal of autoimmunity. 2015;64:66-73.  https://doi.org/10.1016/j.jaut.2015.07.008
  16. Shen C, Wang H, Song Q, Zhang B, Liu X, Li J. Tumor Necrosis Factor-α 308 G/A polymorphism and psoriasis risk: A pooled analysis in different populations. Medicine (Baltimore). 2020;99(47):e22339. https://doi.org/10.1097/MD.0000000000022339
  17. Zhuang L, Ma W, Cai D, Zhong H, Sun Q. Associations between tumor necrosis factor-α polymorphisms and risk of psoriasis: a meta-analysis. PLoS One. 2013;8(12):e68827. https://doi.org/10.1371/journal.pone.0068827
  18. Zhukov AS, Lavrov NV, Khairutdinov VR, Samtsov AV. Models of psoriasis on laboratory animals: current status of the problem. Immunologiya. 2019;40(2):64-69.  https://doi.org/10.24411/0206-4952-2019-12009
  19. Hida S, Ogasawara K, Sato K, Abe M, Takayanagi H, Yokochi T, Sato T, Hirose S, Shirai T, Taki S, Taniguchi T. CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity. 2000;13(5):643-655.  https://doi.org/10.1016/s1074-7613(00)00064-9
  20. Schön MP, Schön M, Warren HB, Donohue JP, Parker CM. Cutaneous inflammatory disorder in integrin alphaE (CD103)-deficient mice. Journal of immunology. 2000;165(11):6583-6589. https://doi.org/10.4049/jimmunol.165.11.6583
  21. Singh K, Gatzka M, Peters T, Borkner L, Hainzl A, Wang H, Sindrilaru A, Scharffetter-Kochanek K. Reduced CD18 levels drive regulatory T cell conversion into Th17 cells in the CD18hypo PL/J mouse model of psoriasis. Journal of immunology. 2013;190(6):2544-2553. https://doi.org/10.4049/jimmunol.1202399
  22. Lin Y, Cui J, Liang P. Knockdown of interleukin 20 receptor 2 (IL-20R2) inhibits the development of psoriasis induced by imiquimod in mice. Chinese journal of cellular and molecular immunology. 2019;35(4):327-332. PMID: 31167692.
  23. Xu M, Lu H, Lee YH, Wu Y, Liu K, Shi Y, An H, Zhang J, Wang X, Lai Y, Dong C. An Interleukin-25-Mediated Autoregulatory Circuit in Keratinocytes Plays a Pivotal Role in Psoriatic Skin Inflammation. Immunity. 2018; 48(4):787-798.e4.  https://doi.org/10.1016/j.immuni.2018.03.019
  24. Blauvelt A, Chiricozzi A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clinical reviews in allergy & immunology. 2018;55(3):379-390.  https://doi.org/10.1007/s12016-018-8702-3
  25. de Alcantara CC, Reiche EMV, Simão A. Cytokines in psoriasis. Advances in clinical chemistry. 2021;100:171-204.  https://doi.org/10.1016/bs.acc.2020.04.004
  26. Johnston A, Fritz Y, Dawes SM, Diaconu D, Al-Attar PM, Guzman AM, Chen CS, Fu W, Gudjonsson JE, McCormick TS, Ward NL. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. Journal of immunology. 2013;190(5):2252-2262. https://doi.org/10.4049/jimmunol.1201505
  27. Billi AC, Ludwig JE, Fritz Y, Rozic R, Swindell WR, Tsoi LC, Gruzska D, Abdollahi-Roodsaz S, Xing X, Diaconu D, Uppala R, Camhi MI, Klenotic PA, Sarkar MK, Husni ME, Scher JU, McDonald C, Kahlenberg JM, Midura RJ, Gudjonsson JE, Ward NL. KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. The Journal of clinical investigation. 2020;130(6):3151-3157. https://doi.org/10.1172/JCI133159
  28. Schonthaler HB, Huggenberger R, Wculek SK, Detmar M, Wagner EF. Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(50):21264-21269. https://doi.org/10.1073/pnas.0907550106
  29. Zibert JR, Wallbrecht K, Schön M, Mir LM, Jacobsen GK, Trochon-Joseph V, Bouquet C, Villadsen LS, Cadossi R, Skov L, Schön MP. Halting angiogenesis by non-viral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions. The Journal of clinical investigation. 2011; 121(1):410-421.  https://doi.org/10.1172/JCI41295
  30. Zenz R, Eferl R, Kenner L, Florin L, Hummerich L, Mehic D, Scheuch H, Angel P, Tschachler E, Wagner EF. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins Nature. 2005; 437(7057):369-375.  https://doi.org/10.1038/nature03963
  31. Tanaka M, Kobiyama K, Honda T, Uchio-Yamada K, Natsume-Kitatani Y, Mizuguchi K, Kabashima K, Ishii KJ. Essential Role of CARD14 in Murine Experimental Psoriasis. Journal of immunology. 2018;200(1):71-81.  https://doi.org/10.4049/jimmunol.1700995
  32. Mellett M, Meier B, Mohanan D, Schairer R, Cheng P, Satoh TK, Kiefer B, Ospelt C, Nobbe S, Thome M, Contassot E, French LE. CARD14 Gain-of-Function Mutation Alone Is Sufficient to Drive IL-23/IL-17-Mediated Psoriasiform Skin Inflammation In Vivo. Journal of investigative dermatology. 2018;138(9):2010-2023. https://doi.org/10.1016/j.jid.2018.03.1525
  33. Breban M, Fernández-Sueiro JL, Richardson JA, Hadavand RR, Maika SD, Hammer RE, Taurog JD. T cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. Journal of immunology. 1996;156(2):794-803. PMID: 8543835 
  34. Schön MP, Detmar M, Parker CM. Murine psoriasis-like disorder induced by naive CD4+ T cells. Nature medicine. 1997;3(2):183-188.  https://doi.org/10.1038/nm0297-183
  35. Singh TP, Zhang HH, Hwang ST, Farber JM. IL-23- and Imiquimod-Induced Models of Experimental Psoriasis in Mice Current protocols in immunology. 2019;125(1):e71.  https://doi.org/10.1002/cpim.71
  36. Moos S, Mohebiany AN, Waisman A, Kurschus FC. Imiquimod-Induced Psoriasis in Mice Depends on the IL-17 Signaling of Keratinocytes. The Journal of investigative dermatology. 2019;139(5):1110-1117. https://doi.org/10.1016/j.jid.2019.01.006
  37. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP, Lubberts E. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. Journal of immunology. 2009;182(9):5836-5845. https://doi.org/10.4049/jimmunol.0802999
  38. Matos TR, O’Malley JT, Lowry EL, Hamm D, Kirsch IR, Robins HS, Kupper TS, Krueger JG, Clark RA. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing αβ T cell clones. The Journal of clinical investigation. 2017;127(11):4031-4041. https://doi.org/10.1172/JCI93396
  39. Swindell WR, Michaels KA, Sutter AJ, Diaconu D, Fritz Y, Xing X, Sarkar MK, Liang Y, Tsoi A, Gudjonsson JE, Ward NL. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome medicine. 2017;9(1):24.  https://doi.org/10.1186/s13073-017-0415-3
  40. Hawkes JE, Gudjonsson JE, Ward NL. The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal. The Journal of investigative dermatology. 2017;137(3):546-549.  https://doi.org/10.1016/j.jid.2016.10.024
  41. Nerurkar L, McColl A, Graham G, Cavanagh J. The Systemic Response to Topical Aldara Treatment is Mediated Through Direct TLR7 Stimulation as Imiquimod Enters the Circulation. Scientific reports. 2017;7(1):16570. https://doi.org/10.1038/s41598-017-16707-5
  42. Garzorz-Stark N, Lauffer F, Krause L, Thomas J, Atenhan A, Franz R, Roenneberg S, Boehner A, Jargosch M, Batra R, Mueller NS, Haak S, Groß C, Groß O, Traidl-Hoffmann C, Theis FJ, Schmidt-Weber CB, Biedermann T, Eyerich S, Eyerich K. Toll-like receptor 7/8 agonists stimulate plasmacytoid dendritic cells to initiate TH17-deviated acute contact dermatitis in human subjects. The Journal of allergy and clinical immunology. 2018;141(4): 1320-1333.e11.  https://doi.org/10.1016/j.jaci.2017.07.045
  43. Schön MP, Erpenbeck L. The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis. Frontiers in immunology. 2018; 9:1323. https://doi.org/10.3389/fimmu.2018.01323
  44. Wang Y, Golden JB, Fritz Y, Zhang X, Diaconu D, Camhi MI, Gao H, Dawes SM, Xing X, Ganesh SK, Gudjonsson JE, Simon DI, McCormick TS, Ward NL. Interleukin 6 regulates psoriasiform inflammation-associated thrombosis. JCI Insight. 2016;1(20):e89384. https://doi.org/10.1172/jci.insight.89384
  45. Kulig P, Musiol S, Freiberger SN, Schreiner B, Gyülveszi G, Russo G, Pantelyushin S, Kishihara K, Alessandrin F, Kündig T, Sallusto F, Hofbauer GF, Haak S, Becher B. IL-12 protects from psoriasiform skin inflammation. Nature communications. 2016;7:13466. https://doi.org/10.1038/ncomms13466
  46. Hüffmeier U, Wätzold M, Mohr J, Schön MP, Mössner R. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations. The British journal of dermatology. 2014;170(1):202-204.  https://doi.org/10.1111/bjd.12548
  47. Körber A, Mössner R, Renner R, Sticht H, Wilsmann-Theis D, Schulz P, Sticherling M, Traupe H, Hüffmeier U. Mutations in IL36RN in patients with generalized pustular psoriasis. The Journal of investigative dermatology. 2013;133(11):2634-2637. https://doi.org/10.1038/jid.2013.214
  48. Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, Knight J, Spain SL, Nestle FO, Burden AD, Capon F, Trembat RC, Barker JN. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis American journal of human genetics. 2011;89(3):432-437.  https://doi.org/10.1016/j.ajhg.2011.07.022
  49. Johnston A, Xing X, Wolterink L, Barnes DH, Yin Z, Reingold L, Kahlenberg JM, Harms PW, Gudjonsson JE. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. The Journal of allergy and clinical immunology. 2017;140(1):109-120.  https://doi.org/10.1016/j.jaci.2016.08.056
  50. Arakawa A, Vollmer S, Besgen P, Galinski A, Summer B, Kawakami Y, Wollenberg A, Dornmair K, Spannagl M, Ruzicka T, Thomas P, Prinz JC. Unopposed IL-36 Activity Promotes Clonal CD4+ T-Cell Responses with IL-17A Production in Generalized Pustular Psoriasis. The Journal of investigative dermatology. 2018;138(6):1338-1347. https://doi.org/10.1016/j.jid.2017.12.024
  51. Gouin O, Barbieux C, Leturcq F, Bonnet des Claustres M, Petrova E, Hovnanian A. Transgenic Kallikrein 14 Mice Display Major Hair Shaft Defects Associated with Desmoglein 3 and 4 Degradation, Abnormal Epidermal Differentiation, and IL-36 Signature. The Journal of investigative dermatology. 2020;140(6):1184-1194. https://doi.org/10.1016/j.jid.2019.10.026
  52. Tortola L, Rosenwald E, Abel B, Blumberg H, Schäfer M, Coyle AJ, Renauld JC, Werner S, Kisielow J, Kopf M. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. The Journal of clinical investigation. 2012;122(11):3965-3976. https://doi.org/10.1172/JCI63451
  53. Croxford AL, Karbach S, Kurschus FC, Wörtge S, Nikolaev A, Yogev N, Klebow S, Schüler R, Reissig S, Piotrowski C, Brylla E, Bechmann I, Scheller J, Rose-John S, Thomas WF, Münzel T, von Stebut E, Waisman A. IL-6 regulates neutrophil microabscess formation in IL-17A-driven psoriasiform lesions. The Journal of investigative dermatology. 2014;134(3):728-735.  https://doi.org/10.1038/jid.2013.404
  54. Pasparakis M, Courtois G, Hafner M, Schmidt-Supprian M, Nenci A, Toksoy A, Krampert M, Goebeler M, Gillitzer R, Israel A, Krieg T, Rajewsky K, Haase I. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature. 2002;417(6891):861-866.  https://doi.org/10.1038/nature00820
  55. Blessing M, Schirmacher P, Kaiser S. Overexpression of bone morphogenetic protein-6 (BMP-6) in the epidermis of transgenic mice: inhibition or stimulation of proliferation depending on the pattern of transgene expression and formation of psoriatic lesions. The Journal of cell biology. 1996;135(1): 227-239.  https://doi.org/10.1083/jcb.135.1.227
  56. Benhadou F, Glitzner E, Brisebarre A, Swedlund B, Song Y, Dubois C, Rozzi M, Paulissen C, Del Marmol V, Sibilia M, Blanpain C. Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease. Science advances. 2020;6(2):eaax5849. https://doi.org/10.1126/sciadv.aax5849
  57. Wolfram JA, Diaconu D, Hatala DA, Rastegar J, Knutsen DA, Lowther A, Askew D, Gilliam AC, McCormick TS, Ward NL. Keratinocyte but not endothelial cell-specific overexpression of Tie2 leads to the development of psoriasis. The American journal of pathology. 2009;174(4):1443-1458. https://doi.org/10.2353/ajpath.2009.080858
  58. Blauvelt A, Chiricozzi A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clinical reviews in allergy & immunology. 2018;55(3):379-390.  https://doi.org/10.1007/s12016-018-8702-3
  59. Volarić I, Vičić M, Prpić-Massari L. The Role of CD8+ T-Cells and their Cytokines in the Pathogenesis of Psoriasis. Acta dermatovenerologica Croatica. 2019;27(3):159-162. PMID: 31542059.
  60. Furue M, Kadono T. The contribution of IL-17 to the development of autoimmunity in psoriasis. Innate immunity. 2019;25(6):337-343.  https://doi.org/10.1177/1753425919852156
  61. Pinget GV, Tan J, Niewold P, Mazur E, Angelatos AS, King N, Macia L. Immune Modulation of Monocytes Dampens the IL-17+ γδ T Cell Response and Associated Psoriasis Pathology in Mice. The Journal of investigative dermatology. 2020;140(12):2398-2407.e1.  https://doi.org/10.1016/j.jid.2020.03.973
  62. Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, Becher B. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. The Journal of clinical investigation. 2012;122(6): 2252-2256. https://doi.org/10.1172/JCI61862
  63. Mabuchi T, Takekoshi T, Hwang ST. Epidermal CCR6+ γδ T cells are major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis Journal of immunology. 2011;187(10):5026-5031. https://doi.org/10.4049/jimmunol.1101817
  64. Grine L, Dejager L, Libert C, Vandenbroucke RE. An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine Growth Factor Reviews. 2015;26(1):25-33.  https://doi.org/10.1016/j.cytogfr.2014.10.009
  65. Wang H, Peters T, Sindrilaru A, Scharffetter-Kochanek K. Key role of macrophages in the pathogenesis of CD18 hypomorphic murine model of psoriasis. The Journal of investigative dermatology. 2009;129(5):1100-1114. https://doi.org/10.1038/jid.2009.43
  66. Wang H, Peters T, Kess D, Sindrilaru A, Oreshkova T, Van Rooijen N, Stratis A, Renkl AC, Sunderkötter C, Wlaschek M, Haase I, Scharffetter-Kochanek K. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. The Journal of clinical investigation. 2006;116(8):2105-2114. https://doi.org/10.1172/JCI27180
  67. Ward NL, Loyd CM, Wolfram JA, Diaconu D, Michaels CM, McCormick TS. Depletion of antigen-presenting cells by clodronate liposomes reverses the psoriatic skin phenotype in KC-Tie2 mice. The British journal of dermatology. 2011;164(4):750-758.  https://doi.org/10.1111/j.1365-2133.2010.10129.x

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.