The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Oynotkinova O.Sh.

Research Institute of Health Organization and Medical Management;
Central State Medical Academy of the Office of the President of the Russian Federation

Matskeplishvili S.T.

Lomonosov Moscow State University

Larina V.N.

N.I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia

Kamynina N.N.

Research Institute of Health Organization and Medical Management

Karavashkina E.A.

Polyclinic No. 1 of the Presidential Administration

Bralyuk M.A.

Polyclinic No. 8

Ryzhikh A.A.

Pirogov Russian National Research Medical University

Ponomareva T.A.

Polyclinic No. 1 of the Presidential Administration

Bikbaeva L.I.

Pirogov Russian National Research Medical University

Dementieva A.S.

Polyclinic No. 1 of the Presidential Administration

The effect of SARS-CoV-2 on multi-organ damage and rehabilitation tactics in the post-COVID period

Authors:

Oynotkinova O.Sh., Matskeplishvili S.T., Larina V.N., Kamynina N.N., Karavashkina E.A., Bralyuk M.A., Ryzhikh A.A., Ponomareva T.A., Bikbaeva L.I., Dementieva A.S.

More about the authors

Read: 4098 times


To cite this article:

Oynotkinova OSh, Matskeplishvili ST, Larina VN, et al. . The effect of SARS-CoV-2 on multi-organ damage and rehabilitation tactics in the post-COVID period. Russian Journal of Cardiology and Cardiovascular Surgery. 2022;15(2):202‑214. (In Russ.)
https://doi.org/10.17116/kardio202215021202

Recommended articles:
Effi­ciency of complex medi­cal reha­bilitation after pulmonary enda­rterectomy. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(6):629-636
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146

References:

  1. Pericàs JM, Hernandez-Meneses M, Sheahan TP, Quintana E, Ambrosioni J, Sandoval E, et al. COVID-19: from epidemiology to treatment. European Heart Journal. 2020;41(22):2092-2112. https://doi.org/10.1093/eurheartj/ehaa46
  2. Bubnova MG, Persiyanova-Dubrova AL, Lyamina NP, Aronov DM. Rehabilitation after new coronavirus infection (COVID-19): principles and approaches. CardioSomatics. 2020;11(4):6-14. (In Russ.). https://doi.org/10.26442/22217185.2020.4.200570
  3. Carfì A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603-605.  https://doi.org/10.1001/jama.2020. 12603
  4. Mandal S, Barnett J, Brill SE, et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalization for COVID-19. Thorax. 2021;76:396-398. Epub ahead of print: 21 Sept 2020. https://doi.org/10.1136/thoraxjnl-2020-215818
  5. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiology. 2020;5(7):802-810.  https://doi.org/10.1001/jamacardio.2020.0950
  6. Casas-Rojo JM, Antón-Santos JM, Millán-Núñez-Cortés J, Lumbreras Bermejo C, Ramos-Rincón JM, Roy-Vallejo E et al. Clinical characteristics of patients hospitalized with COVID-19 in Spain: results from the SEMI-COVID-19 Registry. Revista Clínica Española (English Edition). 2020;220(8):480-494.  https://doi.org/10.1016/j.rceng.2020.07.003
  7. Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020 June 07;41(22):2070-2079. https://doi.org/10.1093/eurheartj/ehaa408
  8. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 Patiens with sever respiratory failure. Cell Host Microbe. 2020;27(6):992-1000. https://doi.org/10.1016/j.chom.2020.04.009
  9. Astuti I, Ysrafil. Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020;18;14(4):407-412.  https://doi.org/10.1016/j.dsx.2020.04.020
  10. Zabozlaev FG, Kravchenko EV, Gallyamova AR, Letunovsky NN. Pathological anatomy of the lungs in the new coronavirus infection (COVID-19). Preliminary analysis of autopsy studies. Clinical Practice. 2020;11(2):21-37. (In Russ.). https://doi.org/10.17816/clinpract34849
  11. Larina VN, Golovko MG, Larin VG. The effect of coronavirus infection (COVID-19) on the cardiovascular system. Bulletin of the Russian State Medical University. 2020;(2):5-13. (In Russ.). https://doi.org/10.24075/vrgmu. 2020.020
  12. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet. 2020 June 06; 395(10239):1763-1770. Epub 2020 May 19.  https://doi.org/10.1016/S0140-6736(20)31189-2
  13. Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J Card Fail. 2020;26(6):470-475.  https://doi.org/10.1016/j.cardfail.2020.04.009
  14. Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. Published online March 25, 2020. https://doi.org/10.1001/jamacardio.2020.0950
  15. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infec tion: A report of five cases. Transl Res. 2020;220:1-13.  https://doi.org/10.1016/j.trsl.2020.04.007
  16. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endothe liitis in COVID-19. Lancet. 2020;395(10234):1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5
  17. Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G, Ruggeri A, et al. Microvascular COVID-19 lung vessels obstruc tive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020.
  18. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38.  https://doi.org/10.1056/NEJMc2007575
  19. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of Throm botic Complications in Critically Ill ICU Patients With COVID-19. Thromb Res. 2020;S0049-3848(20)30120-1.  https://doi.org/10.1016/j.thromres.2020.04.013
  20. Tang N, Bai H, Chen X, et al. Anticoagulant Treatment Is Associated With Decreased Mortality in Severe Coronavirus Disease 2019 Patients With Coagulopathy. J Thromb Haemost. 2020;18(5): 1094-1099. https://doi.org/10.1111/jth.14817
  21. Oynotkinova OSh, Larina VN, Zayratyants OV. Complications from the cardiovascular system in COVID-19. Moscow Medicine. 2020;3:80-89. (In Russ.).
  22. Guo T, Fan Y, Chen M, et al. Association of cardiovascular disease and myocardial injury with outcomes of patients hospitalized with 2019-coronavirus disease (COVID-19). JAMA Cardiol. Published online March 27, 2020. https://doi.org/10.1001/jamacardio.2020.1017
  23. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-1026. https://doi.org/10.1111/jth.14810
  24. Al Yami MS, Silva MA, Donovan JL, Kanaan AO. Venous thromboembolism prophylaxis in medically ill patients: A mixed treatment comparison meta-analysis. J Thromb Thrombolysis. 2018;45(1):36-47.  https://doi.org/10.1007/s11239-017-1562-5
  25. Minet C, Potton L, Bonadona A, Hamidfar-Roy R, Somohano CA, Lugosi M, et al. Venous thromboembolism in the ICU: main characteristics, diagnosis and thromboprophylaxis. Critical Care. 2015;19(1):287.  https://doi.org/10.1186/s13054-015-1003-9
  26. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-1026. https://doi.org/10.1111/jth.14810
  27. Al Yami MS, Silva MA, Donovan JL, Kanaan AO. Venous thromboembolism prophylaxis in medically ill patients: A mixed treatment comparison meta-analysis. J Thromb Thrombolysis. 2018;45(1):36-47.  https://doi.org/10.1007/s11239-017-1562-5
  28. Gurjar M. Heparin thromboprophylaxis in critically ill patients: Is it really changing outcome? Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine. 2014;18(6):345-347.  https://doi.org/10.4103/0972- 5229.133867
  29. Lobastov KV, Schastlivtsev IV, Porembskaya OYa, Dzhenina OV, Bargandzhiya AB, Tsaplin SN. COVID-19-associated coagulopathy: review of current recommendations for diagnosis, treatment and prevention. Statsionarozameshchayushchie tekhnologii: Ambulatornaya khirurgiya. 2020;3-4. (In Russ.). https://doi.org/10.21518/1995-1477-2020-3-4
  30. Ma R, Xie R, Yu C, Si Y, Wu X, Zhao L, et al. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis. Sci Rep. 2017;7(1):4978. https://doi.org/10.1038/s41598-017-04773-8
  31. Kazimirsky AN, Salmasi JM, Poryadin GV. Antiviral system of innate immunity: pathogenesis and treatment of COVID-19. Bulletin of the Russian State Medical University. 2020;(5):5-14. (In Russ.). https://doi.org/10.24075/vrgmu.2020.054
  32. Oynotkinova OSh, Nikonov EL, Zayratyants OV, Rzhevskaya EV, Kryukov EV, Voevoda MI, Maslennikova OM, Larina VN, Demidova TY, Dedov EI. Clinical and Morphological Features of Myocardial Damage and the Course of Fulminant Myocarditis on the Background of COVID-19, Diagnosis and Treatment Tactics. Annals of the Russian Academy of Medical Sciences. 2020; 75(5S):414-425. (In Russ.). https://doi.org/10.15690/vramn1433.
  33. Inciardi RM, Adamo M, Lupi L, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020;41:1821-1829. https://doi.org/10.1093/eurheartj/ehaa388
  34. Nagai T, Nitta K, Kanasaki M, Kova D, Kanasaki K. The biological significance of angiotensin-converting enzyme inhibition to combat kidney fibrosis. Clin Exp Nehrol. 2015;19(1):65-74. 
  35. Guo T, Fan Y, Chen M, et al. Association of cardiovascular disease and myocardial injury with outcomes of patients hospitalized with 2019-coronavirus disease (COVID-19). JAMA Cardiol. Published online March 27, 2020. https://doi.org/10.1001/jamacardio.2020.1017
  36. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet. 2020 June 06; 395(10239):1763-1770. Epub 2020 May 19.  https://doi.org/10.1016/S0140-6736(20)31189-2
  37. Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J Card Fail. 2020;26(6):470-475.  https://doi.org/10.1016/j.cardfail.2020.04.009
  38. Shi S, Qin M, Shen B, et al. Cardiac injury in patients with corona virus disease 2019. JAMA Cardiol. 2020;5(7):802-810. Published online March 25, 2020. https://doi.org/10.1001/jamacardio.2020.0950
  39. Oynotkinova OSh, Nikulin AI, Belyakin SA, Shklovsky BL. The significance of hemorheological and transcapillary disorders in acute coronary syndrome. Bulletin of the Russian Military Medical Academy. 2009;2(26):16-22. (In Russ.).
  40. Oynotkinova OSh, Nemytin YuV. Atherosclerosis and abdominal ischemic disease. M.: Meditsina; 2001:295. (In Russ.).
  41. Liang W, Feng Z, Rao S, Xiao O, Xue X, Lin Z, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut. 2020;69(6):1141-1143. https://doi.org/10.1136/gutjnl-2020-320832
  42. Ternovykh IK, Topuzova MP, Chaikovskaya AD, et al. Neurological manifestations and complications in patients with COVID-19. Translational Medicine. 2020;7(3):21-29. (In Russ.). https://doi.org/10.18705/2311-4495-2020-7-3-21-29
  43. Li K, Wohlford-Lenane C, Perlman S, et al. Middle Eastrespiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712-722. 
  44. Desforges M, Miletti TC, Gagnon M, et al. Activation of human monocytes after infection by human coronavirus 229E. Virus Res. 2007;130(1-2):228-240. 
  45. Li K, Wohlford-Lenane C, Perlman S, et al. Middle Eastrespiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712-722. 
  46. Chan JF, Chan KH, Choi GK, et al. Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis. 2013;207(11):1743-1752.
  47. Li YC, Bai WZ, Hirano N, et al. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J Comp Neurol. 2013;521(1):203-212.  https://doi.org/10.1002/cne.23171
  48. Maury A, Lyoubi A, Peiffer-Smadja N, et al. Neurological manifes- tations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev Neurol (Paris). 2021;177(1-2):51-64.  https://doi.org/10.1016/j.neurol.2020.10.001
  49. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospi- talized patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-690.  https://doi.org/10.1001/ja- maneurol.2020.1127
  50. Herman C, Mayer K, Sarwal A. Scoping review of prevalence of neurologic comorbidities in patients hospitalized for COVID-19. Neurology. 2020;95(2):77-84.  https://doi.org/10.1212/WNL.0000000000009673
  51. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767-783.  https://doi.org/10.1016/S1474-4422(20)30221-0
  52. The Lancet Neurology. The neurological impact of COVID-19. Lancet Neurol. 2020;19(6):471.  https://doi.org/10.1016/S1474-4422(20)30142-3
  53. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23):2268-2270. https://doi.org/10.1056/NEJMc2008597
  54. Chou SH, Beghi E, Helbok R, et al. Global incidence of neurolog- ical manifestations among patients hospitalized with COVID-19 — a report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw. Open. 2021;4(5):e2112131. https://doi.org/10.1001/jamanetworkopen.2021.12131
  55. Edeas M, Saleh J, Peyssonnaux C. Iron: innocent bystander or vi-cious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-305.  https://doi.org/10.1016/j.ijid.2020.05.110
  56. Bellastella G, Maiorino MI, Esposito K. Endocrine complications of COVID-19: what happens to the thyroid and adrenal glands? J Endocrinol Invest. 2020;43(8):1169-1170. https://doi.org/10.1007/s40618-020-01311-8
  57. Akbas EM, Akbas N. COVID-19, adrenal gland, glucocorticoids, and adrenal insufficiency. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2021;165(1):1-7.  https://doi.org/10.5507/bp.2021.01110.5507/bp.2021.011
  58. https://doi.org/10.14341/ket12461 
  59. Skalny AV, Rink L, Ajsuvakova OP, et al. Zinc and respiratory tract infections: perspectives for COVID-19 (review). Int J Mol Med. 2020;46(1):17-26.  https://doi.org/10.3892/ijmm.2020.4575
  60. Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev Cardiovasc Med. 2020;21(3):315-319.  https://doi.org/10.31083/j.rcm.2020.03.126
  61. Hannemann J, Balfanz P, Schwedhelm E, et al. Elevated serum SDMA and ADMA at hospital admission predict in-hospital mortality of COVID-19 patients. Sci Rep. 2021;11:9895. https://doi.org/10.1038/s41598-021-89180-w
  62. St-Jean JR, Jacomy H, Desforges M, et al. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. J Virol. 2004;78:16:8824-8834. https://doi.org/10.1128/JVI.78.16.8824- 8834.2004
  63. Bobker SM, Robbins MS. COVID-19 and headache: A primer for trainees. Headache. 2020;60:8:1806-1811. https://doi.org/10.1111/head.13884
  64. Sampaio Rocha-Filho PA, Voss L. Persistent headache and persistent anosmia associated with COVID-19. Headache. 2020;60(8): 1797-1799. https://doi.org/10.1111/head.13941
  65. Zarifian A, Bidary MZ, Arekhi S, et al. Gastrointestinal and hepatic abnormalities in patients with confirmed COVID-19: A systematic review and meta-analysis. J Med Virol. 2020. https://doi.org/10.1002/jmv.26314.doi:10.1002/jmv.26314
  66. Pan L, Mu M, Ren HG, Yang P, Sun Y, Wang R, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115(5):766-773.  https://doi.org/10.14309/ajg.0000000000000620
  67. Ivashkin VT, Sheptulin AA, Zolnikova OYu, Okhlobystin AV, Poluektova EA, Trukhmanov AS, Shirokova EN, Gonik MI, Trofimovskaya NI. New Coronavirus Infection (COVID-19) and Digestive System. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(3):7-13. (In Russ.). https://doi.org/10.22416/1382-4376-2020-30-3-7
  68. Guan W-J, Ni Z-Y, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. https://doi.org/10.1056/NEJMoa2002032
  69. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224): 565-574  https://doi.org/1016/S0140-6736(20)30251-8
  70. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273.  https://doi.org/10.1038/s41586-020- 2012-7
  71. Liang W, Feng Z, Rao S, Xiao O, Xue X, Lin Z, et al. Diarrhoea may be underestimated: A missing link in 2019 novel coronavirus. Gut. 2020;69(6):1141-1143. https://doi.org/10.1136/gutjnl-2020-320832
  72. Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020.
  73. Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 2020;54:1-7.  https://doi.org/10.1016/j.mito.2020.06.008
  74. Zuo T, Zhang F, Lui GCY, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944-955.e8.  https://doi.org/10.1053/j.gastro.2020.05.048
  75. Tang L, Gu S, Gong Y, et al. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering. 2020. https://doi.org/10.1016/j.eng.2020.05.013
  76. Li J, Richards EM, Handberg EM, et al. Butyrate Regulates COVID-19-Relevant Genes in Gut Epithelial Organoids From Normotensive Rats. Hypertension. 2021;77(2):13-16.  https://doi.org/10.1161/HYPERTENSIONAHA.120.16647
  77. Ardatskaya MD, Butorova LI, Kalashnikova MA, Nugaeva NR, Ovchinnikov YuV, Oynotkinova OSh, et al. Gastroenterological symptoms in COVID-19 patients with mild severity of the disease: opportunities to optimize antidiarrheal therapy. Terapevticheskij arkhiv. 2021;93(8):1005-1013. https://doi.org/10.26442/00403660.2021.08.201020
  78. Interim guidelines: medical rehabilitation for new coronavirus infection (covid-19), Version 2 (31.07.20). Accessed December 10, 2021. (In Russ.) https://xn--80aesfpebagmfblc0a.xn--p1ai/ai/doc/461/attach/28052020_Preg_COVID-19_v1.pdf
  79. Brugliera L, Spina A, Castellazzi P, et al. Rehabilitation of COVID-19 patients. J Rehabil Med. 2020;52(4):jrm00046. https://doi.org/10.2340/16501977-2678
  80. Saks VA, Ventura-Clapier R, Huchua ZA. A creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. Biochim Biophys Acta. 1984;803:254-264. 
  81. Phosphocreatine: biochemical and pharmacological action and clinical application. Ed. Saxa V.A., Bobkova Yu.G., Strumia E. Proceedings of the III All-Union Symposium of Soviet Section of the International Society for the Study of the Heart. Baku, October 5—8, 1986. Moscow: Nauka; 2014.
  82. Bessman SP, Mohan C. Phosphocreatine, exercise, protein synthesis, and insulin. In: De Deyn PP, Marescau B, Stalon V, Qureshi IA. Guanidino Com-pounds in Biology and Medicine. London: John Libbey and Company; 1992.
  83. Dal Monte A, Leonardi LM, Figura F. Effects of the exogenous intake of phosphocreatine on human muscle power. Gazz Med Ital. 1976;135:1-11. 
  84. Tegazzin V, Rossi M, Schiavon R. Investigation of the performance of cyclists treated and not treated with phosphocreatine. Biol Med. 1991;13:121-135.  https://www.researchgate.net/publication/243537463
  85. Landoni G, Zangrillo A, Lomivorotov VV, Likhvantsev V, Ma J, De Simone F, Fominskiy E. Cardiac protection with phosphocreatine: A meta-analysis. Interact Cardiovasc Thorac Surg. 2016;23(4):637-646.  https://doi.org/10.1093/icvts/ivw171
  86. Oynotkinova OSh, Nikonov EL, Zairatyants OV, Rzhevskaya EV, Kryukov EV, Voevoda MI, Maslennikova OM, Larina VN, Demidova TYu, Dedov EI. Clinical and morphological features of myocardial damage and the course of fulminant myocarditis against the background of COVID-19, diagnosis and treatment tactics. Bulletin of the Russian Academy of Medical Sciences. 2020;75(5): 414-425. 
  87. Oynotkinova OSh, Maslennikova OM, Larina VN, Rzhevskaya EV, Syrov AV, Dedov EI, Kryukov EV, Esin EV, Zhuravleva MV, Voevoda MI, Spassky AA, Shakhnovich PG, Demidova TYu. Coordinated expert position on the diagnosis and treatment of fulminant myocarditis in the conditions of the COVID-19 pandemic. Kremlin medicine. Clinical Bulletin. 2020;3:5-18. 
  88. Oynotkinova OSh, Larina VN, Zairatyants OV. Complications from the cardiovascular system in COVID-19. Moscow Medicine. 2020;3(37):80-89. (In Russ.).
  89. Tsyganova TN, Prokopov AF. Scientific bases of using the method of hypo-hyperoxytherapy in the practice of mitochondrial medicine. Physiotherapist. 2016;3:15-22. (In Russ.).
  90. Wu JH, Batist G. Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta. 2013;1830(5):3350-3353. https://doi.org/10.1016/j.bbagen.2012.11.016
  91. Стаценко М.Е., Туркина С.В., Лопушкова Ю.Е., Косивцова М.А. Пациент с хронической сердечной недостаточностью и хронической обструктивной болезнью легких: новые возможности лечения. Медицинский совет. 2022;16(6): 87-96 

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.