The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Smetanina M.A.

Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia

Sipin F.A.

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia;
Novosibirsk National Research State University, Novosibirsk, Russia

Seliverstov E.I.

Russian National Research Medical University named after N.I. Pirogov, Moscow, Russia

Zolotukhin I.A.

Pirogov Russian National Research Medical University, Moscow, Russia

Filipenko M.L.

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia;
Novosibirsk State University, Novosibirsk, Russia

Differentially Expressed Genes in Lower Limb Varicose Vein Disease

Authors:

Smetanina M.A., Sipin F.A., Seliverstov E.I., Zolotukhin I.A., Filipenko M.L.

More about the authors

Journal: Journal of Venous Disorders. 2020;14(2): 122‑134

Read: 1966 times


To cite this article:

Smetanina MA, Sipin FA, Seliverstov EI, Zolotukhin IA, Filipenko ML. Differentially Expressed Genes in Lower Limb Varicose Vein Disease. Journal of Venous Disorders. 2020;14(2):122‑134. (In Russ.)
https://doi.org/10.17116/flebo202014021122

Recommended articles:
Modern view on the etiology of gallstone disease in children. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):59-68
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Black Acanthosis: Diagnosis and Treatment Issues. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(6):709-712
Liver pathology in COVID-19. Russian Journal of Archive of Pathology. 2025;(1):53-59
Infe­ctious factors in atopic dermatitis, pharmaceutical possibilities (systematic lite­rature review). Russian Journal of Clinical Dermatology and Vene­reology. 2025;(1):7-15
Epidemiology of M. geni­talium infe­ction. What is known?. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(2):143-152
Pathogenesis of fibrosis deve­lopment in ovarian endo­metriosis. Russian Journal of Archive of Pathology. 2025;(2):73-78
Portopulmonary hype­rtension. Journal of Respiratory Medi­cine. 2025;(2):39-44

References:

  1. Beebe-Dimmer JL, Pfeifer JR, Engle JS, Schottenfeld D. The epidemiology of chronic venous insufficiency and varicose veins. 2005; 15(3):175-184. 
  2. Zolotukhin IA, Seliverstov EI, Shevtsov YN, Avakiants IP, Nikishkov AS, Tatarintsev AM, Kirienko AI. Prevalence and risk factors for chronic venous disease in the general Russian population. 2017; 54(6):752-758. 
  3. Meissner MH, Gloviczki P, Bergan J, Kistner RL, Morrison N, Pannier F, Pappas PJ, Rabe E, Raju S, Villavicencio JL. Primary chronic venous disorders. 2007;46(Suppl S):54-67. 
  4. Segiet OA, Brzozowa-Zasada M, Piecuch A, Dudek D, Reichman-Warmusz E, Wojnicz R. Biomolecular mechanisms in varicose veins development. 2015;29(2):377-384. 
  5. Pocock ES, Alsaigh T, Mazor R, Schmid-Schönbein GW. Cellular and molecular basis of Venous insufficiency. 2014;6(1):24. 
  6. Pfisterer L, Konig G, Hecker M, Korff T. Pathogenesis of varicose veins — lessons from biomechanics. 2014;43(2):88-99. 
  7. Guzik B, Chwala M, Matusik P, Ludew D, Skiba D, Wilk G, Mrowiecki W, Batko B, Cencora A, Kapelak B, Sadowski J, Korbut R, Guzik TJ. Mechanisms of increased vascular superoxide production in human varicose veins. 2011;121(9):279-286. 
  8. Lim CS, Gohel MS, Shepherd AC, Paleolog E, Davies AH. Venous hypoxia: a poorly studied etiological factor of varicose veins. 2011; 48(3):185-194. 
  9. Lim CS, Davies AH. Pathogenesis of primary varicose veins. 2009;96(11):1231-1242.
  10. Ishikawa Y, Asuwa N, Ishii T, Ito K, Akasaka Y, Masuda T, Zhang L, Kiguchi H. Collagen alteration in vascular remodeling by hemodynamic factors. 2000;437(2):138-148. 
  11. Bradbury AW, Murie JA, Ruckley CV. Role of the leucocyte in the pathogenesis of vascular disease. 1993;80(12):1503-1512.
  12. Sansilvestri-Morel P, Rupin A, Badier-Commander C, Kern P, Fabiani JN, Verbeuren TJ, Vanhoutte PM. Imbalance in the synthesis of collagen type I and collagen type III in smooth muscle cells derived from human varicose veins. 2001;38(6):560-568. 
  13. Degiorgio-Miller AM, Treharne LJ, McAnulty RJ, Coleridge Smith PD, Laurent GJ, Herrick SE. Procollagen type I gene expression and cell proliferation are increased in lipodermatosclerosis. 2005;152(2):242-249. 
  14. Dahi S, Lee JG, Lovett DH, Sarkar R. Differential transcriptional activation of matrix metalloproteinase-2 and membrane type-1 matrix metalloproteinase by experimental deep venous thrombosis and thrombin. 2005;42(3):539-545. 
  15. Görmüs U, Timirci-Kahraman O, Ergen A, Kunt AT, Isbir S, Dalan AB, Isbir T. Expression levels of elastin and related genes in human varicose veins. 2014;60(2):68-73.
  16. Herouy Y, Mellios P, Bandemir E, Dichmann S, Nockowski P, Schöpf E, Norgauer J. Inflammation in stasis dermatitis upregulates MMP-1, MMP-2 and MMP-13 expression. 2001;25(3):198-205. 
  17. Irwin C, Synn A, Kraiss L, Zhang Q, Griffen MM, Hunter GC. Metalloproteinase expression in venous aneurysms. 2008;48(5):1278-85. 
  18. Woodside KJ, Hu M, Burke A, Murakami M, Pounds LL, Killewich LA, Daller JA, Hunter GC. Morphologic characteristics of varicose veins: possible role of metalloproteinases. 2003;38(1):162-169. 
  19. Beidler SK, Douillet CD, Berndt DF, Keagy BA, Rich PB, Marston WA. Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous insufficiency before and after compression therapy. 2008;16(5):642-648. 
  20. Mwaura B, Mahendran B, Hynes N, Defreitas D, Avalos G, Adegbola T, Adham M, Connolly CE, Sultan S. The impact of differential expression of extracellular matrix metalloproteinase inducer, matrix metalloproteinase-2, tissue inhibitor of matrix metalloproteinase-2 and PDGF-AA on the chronicity of venous leg ulcers. 2006;31(3):306-310. 
  21. Hughes SF, Cotter MJ, Evans SA, Jones KP, Adams RA. Role of leucocytes in damage to the vascular endothelium during ischaemia-reperfusion injury. 2006;63(4):166-170. 
  22. Tisato V, Zauli G, Voltan R, Gianesini S, di Iasio MG, Volpi I, Fiorentini G, Zamboni P, Secchiero P. Endothelial cells obtained from patients affected by chronic venous disease exhibit a pro-inflammatory phenotype. 2012;7(6):e39543.
  23. Poredos P, Spirkoska A, Rucigaj T, Fareed J, Jezovnik MK. Do blood constituents in varicose veins differ from the systemic blood constituents? 2015;50(2):250-256. 
  24. Durán W, Pappas PJ, Schmid-Schönbein GW. Microcirculatory inflammation in chronic venous insufficiency: current status and future directions. 2000;7(6-2):49-58. 
  25. Castro-Ferreira R, Cardoso R, Leite-Moreira A, Mansilha A. The Role of Endothelial Dysfunction and Inflammation in Chronic Venous Disease. 2018;46:380-393. 
  26. Gomez I, Benyahia C, Le Dall J, Payre C, Louedec L, Leseche G, Lambeau G, Longrois D, Norel X. Absence of inflammatory conditions in human varicose saphenous veins. 2013;62(3):299-308. 
  27. Lim CS, Kiriakidis S, Paleolog EM, Davies AH. Increased activation of the hypoxia-inducible factor pathway in varicose veins. 2012;55(5): 1427-1439.
  28. Tang X, Guo D, Lin C, Shi Z, Qian R, Fu W, Liu J, Li X, Fan L. Upregulation of the gene expression of CLOCK is correlated with hypoxia-inducible factor 1α in advanced varicose lesions. 2015;12(4):6164-6170.
  29. Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia- inducible factor pathway and diseases of the vascular wall. 2013; 58(1):219-230. 
  30. Florez A, De Haro J, Bleda S, Varela C, Esparza L, Acin F. Analysis of vascular endothelial growth factor gene expression in the tissues of patients with chronic venous insufficiency. 2013;28(1):32-37. 
  31. Herouy Y, Kreis S, Mueller T, Duerk T, Martiny-Baron G, Reusch P, May F, Idzko M, Norgauer Y. Inhibition of angiogenesis in lipodermatosclerosis: implication for venous ulcer formation. 2009;24(5):645-651. 
  32. Smetanina MA, Shadrina AS, Zolotukhin IA, Seliverstov EI, Filipenko ML. Differentially expressed genes in varicose veins disease: current state of the problem, analysis of the published data. 2017;11(4):190-202. (In Russ.)
  33. Urbanek T, Skop B, Wiaderkiewicz R, Wilczok T, Ziaja K, Lebda-Wyborny T, Pawlicki K. Smooth muscle cell apoptosis in primary varicose veins. 2004;28(6):600-611. 
  34. Xu Y, Bei Y, Li Y, Chu H. Phenotypic and functional transformation in smooth muscle cells derived from varicose veins. 2017;5(5):723-733. 
  35. Smetanina MA, Kel AE, Sevost’ianova KS, Maiborodin IV, Shevela AI, Zolotukhin IA, Stegmaier P, Filipenko ML. DNA methylation and gene expression profiling reveal MFAP5 as a regulatory driver of extracellular matrix remodeling in varicose vein disease. 2018;10(8):1103-1119.
  36. Huang X, Liu Z, Shen L, Jin Y, Xu G, Zhang Z, Fang C, Guan W, Liu C. Augmentation of miR-202 in varicose veins modulates phenotypic transition of vascular smooth muscle cells by targeting proliferator-activated receptor-γ coactivator-1α.  2019;120(6):10031-10042.
  37. Hollingsworth SJ, Powell GI, Barker SG, Cooper DG. Primary varicose veins: altered transcription of VEGF and its receptors (KDR, flt-1, soluble flt-1) with sapheno-femoral junction incompetence. 2004;27(3):259-268. 
  38. Bertrand-Thiebault C, Ferrari L, Boutherin-Falson O, Kockx M, Desquand-Billiald S, Fichelle JM, Nottin R, Renaud JF, Batt AM, Visvikis S. Cytochromes P450 are differently expressed in normal and varicose human saphenous veins: linkage with varicosis. 2004;31(5-6):295-301. 
  39. Zhang J, Nie Q, Si C, Wang C, Chen Y, Sun W, Pan L, Guo J, Kong J, Cui Y, Wang F, Fan X, Ye Z, Wen J, Liu P. Weighted gene co-expression network analysis for RNA-sequencing data of the varicose veins transcriptome. 2019;10:278. 
  40. Lee JD, Yang WK, Lee TH. Increased expression of hypoxia-inducible factor-1alpha and Bcl-2 in varicocele and varicose veins. 2012;26(8):1100-1105.
  41. Kun L, Ying L, Lei W, Jianhua Z, Yongbo X, Tao W, Jinyuan T, Haibo C. Dysregulated apoptosis of the venous wall in chronic venous disease and portal hypertension. 2016;31(10):729-736. 
  42. Iriz E, Vural C, Ereren E, Poyraz A, Erer D, Oktar L, Gokgoz L, Halit V, Soncul H. Effects of calcium dobesilate and diosmin-hesperidin on apoptosis of venous wall in primary varicose veins. 2008;37(3):233-240. 
  43. Filis K, Kavantzas N, Isopoulos T, Antonakis P, Sigalas P, Vavouranakis E, Sigala F. Increased vein wall apoptosis in varicose vein disease is related to venous hypertension. 2011;41(4):533-539. 
  44. Filis K, Kavantzas N, Dalainas I, Galyfos G, Karanikola E, Toutouzas K, Tsioufis C, Sigala F. Evaluation of apoptosis in varicose vein disease complicated by superficial vein thrombosis. 2014;43(4):252-259. 
  45. Ascher E, Jacob T, Hingorani A, Tsemekhin B, Gunduz Y. Expression of molecular mediators of apoptosis and their role in the pathogenesis of lower-extremity varicose veins. 2001;33(5):1080-1086.
  46. Ducasse E, Giannakakis K, Chevalier J, Dasnoy D, Puppinck P, Speziale F, Fiorani P, Faraggiana T. Dysregulated apoptosis in primary varicose veins. 2005;29(3):316-323. 
  47. Ducasse E, Giannakakis K, Speziale F, Midy D, Sbarigia E, Baste JC, Faraggiana T. Association of primary varicose veins with dysregulated vein wall apoptosis. 2008;35(2):224-229. 
  48. Yongbo X, Wei H, Lei W, Jianhua Z, Tao W, Jinyuan T, Kun L, Haibo C. Changes in levels of apoptosis in the walls of different segments of great saphenous varicose veins. 2016;31(9):632-639. 
  49. Ghaderian SM, Lindsey NJ, Graham AM, Homer-Vanniasinkam S, Akbarzadeh Najar R. Pathogenic mechanisms in varicose vein disease: the role of hypoxia and inflammation. 2010;42(5):446-453. 
  50. Surendran S, Ramegowda KS, Suresh A, Binil Raj SS, Lakkappa RK, Kamalapurkar G, Radhakrishnan N, C Kartha C. Arterialization and anomalous vein wall remodeling in varicose veins is associated with upregulated FoxC2-Dll4 pathway. 2016;96(4):399-408. 
  51. Jacob T, Hingorani A, Ascher E. Overexpression of transforming growth factor-beta1 correlates with increased synthesis of nitric oxide synthase in varicose veins. 2005;41(3):523-530. 
  52. Ortega MA, Romero B, Asúnsolo Á, Sainz F, Martinez-Vivero C, Álvarez-Mon M, Buján J, García-Honduvilla N. Behavior of smooth muscle cells under hypoxic conditions: possible implications on the varicose vein endothelium. 2018;7156150.
  53. Chen S, Qin S, Wang M, Zhang S. Expression and significance of NELIN and SM22α in varicose vein tissue. 2015;9(3):845-849. 
  54. Cui C, Liu G, Huang Y, Lu X, Lu M, Huang X, Li W, Jiang M. MicroRNA profiling in great saphenous vein tissues of patients with chronic venous insufficiency. 2012;228(4):341-350. 
  55. Del Rio Sola L, Aceves M, Duenas AI, Gonzalez-Fajardo JA, Vaquero C, Crespo MS, Garcia-Rodriguez C. Varicose veins show enhanced chemokine expression. 2009;38(5):635-641. 
  56. Hsieh CS, Tsai CT, Chen YH, Chang SN, Hwang JJ, Chuang EY, Wu IH. Global expression profiling identifies a novel Hyaluronan Synthases 2 gene in the pathogenesis of lower extremity varicose veins. 2018;7(12). pii: E537.
  57. Markovic JN, Shortell CK. Genomics of varicose veins and chronic venous insufficiency. 2013;26(1):2-13. 
  58. Cario-Toumaniantz C, Boularan C, Schurgers LJ, Heymann MF, Le Cunff M, Leger J, Loirand G, Pacaud P. Identification of differentially expressed genes in human varicose veins: involvement of matrix gla protein in extracellular matrix remodeling. 2007;44(6):444-459. 
  59. Nowak KJ, Sewry CA, Navarro C, Squier W, Reina C, Ricoy JR, Jayawant SS, Childs AM, Dobbie JA, Appleton RE, Mountford RC, Walker KR, Clement S, Barois A, Muntoni F, Romero NB, Laing NG. Nemaline myopathy caused by absence of alpha-skeletal muscle actin. 2007;61(2):175-184. 
  60. Wang X, Zhao R, Liu C, Qiao T. Abnormal expression of Tie1 on the valves of great saphenous varicose vein. 2013;28(2):93-100. 
  61. Gillespie DL, Patel A, Fileta B, Chang A, Barnes S, Flagg A, Kidwell M, Villavicencio JL, Rich NM. Varicose veins possess greater quantities of MMP-1 than normal veins and demonstrate regional variation in MMP-1 and MMP-13.  2002;106(2):233-238. 
  62. Akar I, Ince I, Aslan C, Benli I, Demir O, Altındeger N, Dogan A, Ceber M. Oxidative stress and prolidase enzyme activity in the pathogenesis of primary varicose veins. 2018;26(3):315-321. 
  63. Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, Li H. The emerging landscape of circular RNA in life processes. 2017;14(8):992-999. 
  64. Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. 2016;238:42-51. 
  65. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. 2013;495(7441):384-388. 
  66. Zhang W, Li L, Si Y, Shi Z, Zhu T, Zhuang S, Fu W. Identification of aberrant circular RNA expression and its potential clinical value in primary great saphenous vein varicosities. 2018;499(2):328-337. 
  67. Yu C, Wang X, Hong Y, Chen G, Ge J, Cao H, Zhou B. Expression profile of tRNA derived fragments and their potential roles in human varicose veins. 2019;20(4):3191-3201.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.