The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Gareev I.F.

Bashkir State Medical University of the Ministry of Health of the Russia, Ufa, Russia

Beylerli O.A.

Bashkir State Medical University of the Ministry of Health of the Russia, Ufa, Russia

Diagnostic and Prognostic Potential of MicroRNA in Deep Vein Thrombosis

Authors:

Gareev I.F., Beylerli O.A.

More about the authors

Journal: Journal of Venous Disorders. 2019;13(4): 318‑325

Read: 1259 times


To cite this article:

Gareev IF, Beylerli OA. Diagnostic and Prognostic Potential of MicroRNA in Deep Vein Thrombosis. Journal of Venous Disorders. 2019;13(4):318‑325. (In Russ.)
https://doi.org/10.17116/flebo201913041318

Recommended articles:
Myokines — the cardiometabolic risk pote­ntial biomarkers. Russian Journal of Preventive Medi­cine. 2025;(7):119-126

References:

  1. Naringrekar H, Sun J, Ko C, Rodgers SK. It’s Not All Deep Vein Thrombosis: Sonography of the Painful Lower Extremity With Multimodality Correlation. Journal of Ultrasound in Medicine. 2018. https://doi.org/10.1002/jum.14776
  2. Sharif S, Eventov M, Kearon C, Parpia S, Li M, Jiang R, Sneath P, Fuentes CO, Marriott C, de Wit K. Comparison of the age-adjusted and clinical probability-adjusted D-dimer to exclude pulmonary embolism in the emergency department. The American Journal of Emergency Medicine. 2018. https://doi.org/10.1016/j.ajem.2018.07.053
  3. Schaefer JK, Jacobs B, Wakefield TW, Sood SL. New biomarkers and imaging approaches for the diagnosis of deep venous thrombosis. Acta Pharmacologica Sinica. 2017;24(3):274-281. https://doi.org/10.1097/MOH.0000000000000339
  4. Park SI, Lee M, Lee MS, Kim MD, Won JY, Lee DY. Single-session aspiration thrombectomy of lower extremity deep vein thrombosis using large-size catheter without pharmacologic thrombolysis. CardioVascular and Interventional Radiology. 2014;37:412-419. https://doi.org/10.1007/s00270-013-0676-1
  5. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L. MiRNAs in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacologica Sinica. 2018;39(7):1073-1084. https://doi.org/10.1038/aps.2018.30
  6. Lianidou E, Pantel K. Liquid Biopsies. Genes Chromosomes Cancer. 2018. https://doi.org/10.1002/gcc.22695
  7. Tay JW, Romeo G, Hughes QW, Baker RI. Micro-ribonucleic acid 494 regulation of protein S expression. Journal of Thrombosis and Haemostasis. 2013;11(08):1547-1555. https://doi.org/10.1111/jth.12331
  8. Tay J, Tiao J, Hughes Q, Gilmore G, Baker R. Therapeutic potential of miR-494 in thrombosis and other diseases: a review. Australian Journal of Chemistry. 2016;69(10):1078-1093. https://doi.org/10.1071/CH16020
  9. Ali HO, Arroyo AB, González-Conejero R, Stavik B, Iversen N, Sandset PM, Martínez C, Skretting G. The role of microRNA-27a/b and microRNA-494 in estrogen-mediated downregulation of tissue factor pathway inhibitor α. Journal of Thrombosis and Haemostasis. 2016;14(06):1226-1237. https://doi.org/10.1111/jth.13321
  10. Zhang X, Yu H, Lou JR, Zheng J, Zhu H, Popescu NI, Lupu F, Lind SE, Ding WQ. MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. The Journal of Biological Chemistry. 2011;286(02):1429-1435. https://doi.org/10.1074/jbc.M110.146530
  11. Yu G, Li H, Wang X, Liu X, Hu C. MicroRNA-19a targets tissue factor to inhibit colon cancer cells migration and invasion. Molecular and Cellular Biochemistry. 2013;380(1-2):239-247. https://doi.org/10.3892/etm.2017.4655
  12. Li S, Ren J, Xu N, Zhang J, Geng Q, Cao C, Lee C, Song J, Li J, Chen H. MicroRNA-19b functions as potential antithrombotic protector in patients with unstable angina by targeting tissue factor. Journal of Molecular and Cellular Cardiology. 2014;75:49-57. https://doi.org/10.1016/j.yjmcc.2014.06.017
  13. Li S, Chen H, Ren J, Geng Q, Song J, Lee C, Cao C, Zhang J, Xu N. MicroRNA-223 inhibits tissue factor expression in vascular endothelial cells. Atherosclerosis. 2014;237(02):514-520. https://doi.org/10.1016/j.atherosclerosis.2014.09.033
  14. Chuang TD, Luo X, Panda H, Chegini N. miR-93/106b and their host gene, MCM7, are differentially expressed in leiomyomas and functionally target F3 and IL-8. Molecular Endocrinology. 2012;26(06):1028-1042. https://doi.org/10.1210/me.2012-1075
  15. Eisenreich A, Rauch U. Regulation of the Tissue Factor Isoform Expression and Thrombogenicity of HMEC-1 by miR-126 and miR-19a. Cell Biology: Research and Therapy Journal. 2013;2(01). https://doi.org/10.4172/2324-9293.1000101
  16. Teruel R, Perez-Sanchez C, Corral J, Herranz MT, Perez-Andreu V, Saiz E, Garcia-Barbera N, Martinez-Martinez I, Roldan V, Vicente V, Lopez-Pedrera C, Martinez C. Identification of miRNAs as potential modulators of tissue factor expression in patients with systemic lupus erythematosus and antiphospholipid syndrome. Journal of Thrombosis and Haemostasis. 2011;9:1985-1992. https://doi.org/10.1111/j.1538-7836.2011.04451.x
  17. Andreasen PA. PAI-1 — a potential therapeutic target in cancer. Current Drug Targets. 2007;8(09):1030-1041.
  18. Luo M, Li R, Ren M, Chen N, Deng X, Tan X, Li Y, Zeng M,Yang Y, Wan Q, Wu J. Hyperglycaemia-induced reciprocal changes in miR-30c and PAI-1 expression in platelets. Scientific Reports. 2016;6:36687. https://doi.org/10.1038/srep36687
  19. Fort A, Borel C, Migliavacca E, Antonarakis SE, Fish RJ, Neerman-Arbez M. Regulation of fibrinogen production by microRNAs. Blood. 2010;116(14):2608-2615.
  20. Bao CX, Zhang DX, Wang NN, Zhu XK, Zhao Q, Sun XL. MicroRNA-335-5p suppresses lower extremity deep venous thrombosis by targeted inhibition of PAI-1 via the TLR4 signalingpathway. Journal of Cellular Biochemistry. 2018;119(6):4692-4710. https://doi.org/10.1002/jcb.26647
  21. Meng Q, Wang W, Yu X, Li W, Kong L, Qian A, Li C, Li X. Upregulation of MicroRNA-126 Contributes to Endothelial Progenitor Cell Function in Deep Vein Thrombosis via Its Target PIK3R2. Journal of Cellular Biochemistry. 2015;116:1613-1623. https://doi.org/10.1002/jcb.25115
  22. Kong L, Hu N, Du X, Wang W, Chen H, Li W, Wei S, Zhuang H, Li X. Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. Journal of Translational Medicine. 2016;14:23. https://doi.org/10.1186/s12967-016-0775-2
  23. Deatrick KB, Obi A, Luke CE, Elfline MA, Sood V, Upchurch GR Jr, Jaffer F, Wakefield TW, Henke PK. Matrix metalloproteinase-9 deletion is associated with decreased mid-term vein wall fibrosis in experimental stasis DVT. Thrombosis Research. 2013;132(3):360-366. https://doi.org/10.1016/j.thromres.2013.06.027
  24. Franciscis S, Gallelli L, Amato B, Butrico L, Rossi A, Buffone G, Caliò FG, De Caridi G, Grande R, Serra R. Plasma MMP and TIMP evaluation in patients with deep venous thrombosis: could they have a predictive role in the development of post-thrombotic syndrome? International Wound Journal. 2016;13(6):1237-1245. https://doi.org/10.1111/iwj.12489
  25. Ai P, Shen B, Pan H, Chen K, Zheng J, Liu F. MiR-411 suppressed vein wall fibrosis by downregulating MMP-2 via targeting HIF-1α. Journal of Thrombosis and Thrombolysis. 2018;45(2):264-273. https://doi.org/10.1007/s11239-017-1596-8
  26. Qin JZ, Wang SJ, Xia C. MicroRNAs regulate nitric oxide release from endothelial cells by targeting NOS3. Journal of Thrombosis and Thrombolysis. 2018;46(3):275-282. https://doi.org/10.1007/s11239-018-1684-4
  27. Schaefer JK, Jacobs B, Wakefield TW, Sood SL. New biomarkers and imaging approaches for the diagnosis of deep venous thrombosis. Current Opinion in Hematology. 2017;24:274-281. https://doi.org/10.1097/MOH.0000000000000339
  28. Hollenhorst MA, Battinelli EM. Thrombosis, hypercoagulable states, and anticoagulants. Primary Care. 2016;43:619-635. https://doi.org/10.1016/j.pop.2016.07.001
  29. Zhang C, Fu Q, Zhao Y, Mu S, Liu L. Short-term anticoagulant therapy and thrombus location are independent risk factors for delayed recanalization of deep vein thrombosis. Medical Science Monitor. 2016;22:219-225.
  30. Robinson S, Follo M, Haenel D,Mauler M, Stallmann D, Tewari M, Duerschmied D, Peter K, Bode C, Ahrens I, Hortmann M. Droplet digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction. International Journal of Cardiology. 2018;257:247-254. https://doi.org/10.1016/j.ijcard.2017.10.111
  31. Stoicea N, Du A, Lakis DC, Tipton C, Arias-Morales CE, Bergese SD. The MiRNA Journey from Theory to Practice as a CNS Biomarker. Front Genet. 2016; 7(11). https://doi.org/10.3389/fgene.2016.00011
  32. Li Z, Ni J. Role of microRNA-26a in the diagnosis of lower extremity deep vein thrombosis in patients with bone trauma. Experimental and Therapeutic Medicine. 2017;14(5):5069-5074. https://doi.org/10.3892/etm.2017.5183
  33. Bauer D, Redmon N, Mazzio E, Taka E, Reuben JS, Day A, Sadrud-Din S, Flores-Rozas H, Soliman KF, Darling-Reed S. Diallyl disulfide inhibits TNF-α induced CCL2 release through MAPK/ERK and NF-Kappa-B signaling. Cytokine. 2015;75:117-126. https://doi.org/10.1016/j.cyto.2014.12.007
  34. Haghikia A, Ricke-Hoch M, Stapel B, Gorst I, Hilfiker-Kleiner D. Stat3, a key regulator of cell-to-cell communication in the heart. Cardiovascular Research. 2014;102:281-289. https://doi.org/10.1093/cvr/cvu034
  35. Wang X, Sundquist K, Elf JL, Strandberg K, Svensson PJ, Hedelius A, Palmer K, Memon AA, Sundquist J, Zöller B. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis. Thrombosis and Haemostasis. 2016;116(2):328-336. https://doi.org/10.1160/TH16-01-0071
  36. Sarkar S, Dey BK, Dutta A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by downregulation of Cdc25A. Molecular Biology of the Cell. 2010;21:2138-2149. https://doi.org/10.1091/mbc.E10-01-0062
  37. Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernández-Hernando C, Suárez Y. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arteriosclerosis, Thrombosis, and Vascular Biology. 2011;31:2595-2606. https://doi.org/10.1161/ATVBAHA.111.236521
  38. Qin J, Liang H, Shi D, Dai J, Xu Z, Chen D, Chen X, Jiang Q. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. Journal of Thrombosis and Thrombolysis. 2015;39(2):215-221. https://doi.org/10.1007/s11239-014-1131-0
  39. Xie X, Liu C, Lin W, Zhan B, Dong C, Song Z, Wang S, Qi Y, Wang J, Gu Z. Deep vein thrombosis is accurately predicted by comprehensive analysis of the levels of microRNA-96 and plasma D-dimer. Experimental and Therapeutic Medicine. 2016;12(3):1896-900. https://doi.org/10.3892/etm.2016.3546
  40. Jiang Z, Ma J, Wang Q, Wu F, Ping J, Ming L. Combination of Circulating miRNA-320a/b and D-Dimer Improves Diagnostic Accuracy in Deep Vein Thrombosis Patients. Medical Science Monitor. 2018;24:2031-2037. https://doi.org/10.12659/MSM.906596
  41. Gidlöf O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, Erlinge D. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood. 2013;121:3908-3917:S1-S26.
  42. Zhou X, Wen W, Shan X, Qian J, Li H, Jiang T, Wang W, Cheng W, Wang F, Qi L, Ding Y, Liu P, Zhu W, Chen Y. MiR-28-3p as a potential plasma marker in diagnosis of pulmonary embolism. Thrombosis Research. 2016;138:91-95. https://doi.org/10.1016/j.thromres.2015.12.006
  43. Xiao J, Jing ZC, Ellinor PT, Liang D, Zhang H, Liu Y, Chen X, Pan L, Lyon R, Liu Y, Peng LY, Liang X, Sun Y, Popescu LM, Condorelli G, Chen YH. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. Journal of Translational Medicine. 2011;9:159. https://doi.org/10.1186/1479-5876-9-159
  44. Tingwei Liu Jian Kang Fan Liu. Plasma Levels of microRNA-221 (miR-221) are Increased in Patients with Acute Pulmonary Embolism. Medical Science Monitor. 2018;24:8621-8626. https://doi.org/10.12659/MSM.910893
  45. Kessler T, Erdmann J, Vilne B, Bruse P, Kurowski V, Diemert P, Schunkert H, Hendrik B. Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. Journal of Translational Medicine. 2016;14:120. https://doi.org/10.1186/s12967-016-0886-9
  46. Wang Q, Ma J, Jiang Z, Wu F, Ping J, Ming L. Diagnostic value of circulating microRNA-27a/b in patients with acute pulmonary embolism. International Angiology. 2018;37(1):19-25. https://doi.org/10.23736/S0392-9590.17.03877-9

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.