The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Soboleva T.V.

Sechenov First Moscow State Medical University

Shchekochikhin D.Yu.

Sechenov First Moscow State Medical University

Demura T.A.

Sechenov First Moscow State Medical University

Babayan G.K.

Sechenov First Moscow State Medical University

Stonogina D.A.

Sechenov First Moscow State Medical University

Vasiliev S.V.

Sechenov First Moscow State Medical University

Lomonosova A.A.

Sechenov First Moscow State Medical University

Zakharevich V.M.

Sechenov First Moscow State Medical University

Shevchenko O.P.

Sechenov First Moscow State Medical University

Regulatory miRNA21, miRNA92, miRNA221 and miRNAlet7 expression in carotid and coronary atherosclerotic plaques

Authors:

Soboleva T.V., Shchekochikhin D.Yu., Demura T.A., Babayan G.K., Stonogina D.A., Vasiliev S.V., Lomonosova A.A., Zakharevich V.M., Shevchenko O.P.

More about the authors

Read: 1229 times


To cite this article:

Soboleva TV, Shchekochikhin DYu, Demura TA, et al. . Regulatory miRNA21, miRNA92, miRNA221 and miRNAlet7 expression in carotid and coronary atherosclerotic plaques. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;17(3):245‑252. (In Russ.)
https://doi.org/10.17116/kardio202417031245

Recommended articles:

References:

  1. Insull W. The Pathology of Atherosclerosis: Plaque Development and Plaque Responses to Medical Treatment. The American Journal of Medicine. 2009;122(1):S3-S14.  https://doi.org/10.1016/j.amjmed.2008.10.013
  2. Barrett TJ. Macrophages in Atherosclerosis Regression. Arteriosclerosis, Thrombosis and Vascular Biology. 2020;40(1):20-33.  https://doi.org/10.1161/ATVBAHA.119.312802
  3. Severino P, D’Amato A, Pucci M, et al. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. International Journal of Molecular Sciences. 2020;21(21):8118. https://doi.org/10.3390/ijms21218118
  4. Kong A, Lai K, Lim S, et al. miRNA in Ischemic Heart Disease and Its Potential as Biomarkers: A Comprehensive Review. Int J Mol Sci. 2022;23(16):9001. https://doi.org/10.3390/ijms23169001
  5. González L, Bulnes J, Orellana M, et al. The Role of Colchicine in Atherosclerosis: From Bench to Bedside (2022). Pharmaceutics. 2022;14(7):1395. https://doi.org/10.3390/pharmaceutics14071395
  6. Tsioufis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci. 2022;23(24):15937. https://doi.org/10.3390/ijms232415937
  7. Rozhkov AN, Shchekochikhin DYu, Baulina NM, et al. Analysis of circulating micro-rna in patients with coronary artery disease with different risk of cardiovascular complications. Correlation with ct angiography data. Bulletin of the Russian Academy of Medical Sciences. 2020;75(4):283-291. (In Russ.).
  8. Wang F, Long G, Zhao C, et al. Atherosclerosis-Related Circulating miRNAs as Novel and Sensitive Predictors for Acute Myocardial Infarction. PLoS ONE. 2014;9(9):e105734. https://doi.org/10.1371/journal.pone.0105734
  9. Pereira-da-Silva T, Coutinho Cruz M, Carrusca C et al. Circulating microRNA profiles in different arterial territories of stable atherosclerotic disease: a systematic review. Am J Cardiovasc Dis. 2018;8(1):1-13. 
  10. Balzano F, Deiana M, Dei Giudici S, et al. miRNA Stability in Frozen Plasma Samples. Molecules. 2015;20(10):19030-19040. https://doi.org/10.3390/molecules201019030
  11. Schober A, Nazari-Jahantigh M, Weber C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nature Reviews Cardiology. 2015;12(6):361-374.  https://doi.org/10.1038/nrcardio.2015.38
  12. P Sun’ L-N Tang, G-Z Li, et al. Effects of MiR-21 on the proliferation and migration of vascular smooth muscle cells in rats with atherosclerosis via the Akt/ERK signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(5):2216-2222. https://doi.org/10.26355/eurrev_201903_17269
  13. Deng S, Zhang Y, Wang Y, et al. MicroRNA-92 regulates vascular smooth muscle cell function by targeting KLF4 during vascular restenosis and injury. Int J Clin Exp Pathol. 2019;12(12):4253-4262.
  14. Shurygina IA, Shurygin MG, Zelenin NV, Granina GB. The role of map-kinase mechanisms in regulation of cell growth (literature review). Siberian Medical Journal. 2009;6:36-40. (In Russ.).
  15. Bing Q, Bo X, Desheng L, et al. MicroRNA let-7c inhibits Bcl-xl expression and regulates ox-LDL-induced endothelial apoptosis. Korean Society for Biochemistry and Molecular Biology. 2012;45(8):464-469. 
  16. Zhu L, Li Q, Qi D, et al. Atherosclerosis‐associated endothelial cell apoptosis by miRNA let7‐b‐mediated downregulation of HAS‐2. Journal of Cellular Biochemistry. 2019;121(8-9):3961-3972. https://doi.org/10.1002/jcb.29537
  17. Brennan E, Wang B, McClelland A, et al. Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis. Diabetes. 2017;66(8):2266-2277. https://doi.org/10.2337/db16-1405
  18. Ward JA, Esa N, Pidikiti R, et al. Circulating cell and plasma microRNA profiles differ between non-ST-segment and ST-segment-elevation myocardial infarction. Family Medicine & Medical Science Research. 2013;2(2):108.  https://doi.org/10.4172/2327-4972.1000108
  19. Lacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12.  https://doi.org/10.1186/s12263-017-0577-z
  20. Kim JS, Pak K, Goh TS, et al. Prognostic Value of MicroRNAs in Coronary Artery Diseases: A Meta-Analysis. Yonsei Medical Journal. 2018;59(4):495-500 . ttps://doi.org/10.3349/ymj.2018.59.4.495
  21. Parahuleva MS, Lipps C, Parviz B, et al. MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Sci Rep. 2018;8:7823.
  22. Barwari T, Rienks M, Mayr M. MicroRNA-21 and the Vulnerability of Atherosclerotic Plaques. Mol Ther. 2018;26(4):938-940.  https://doi.org/10.1016/j.ymthe.2018.03.005
  23. McDonald RA, Halliday CA, Miller AM, et al. Reducing in-stent restenosis: Therapeutic manipulation of miRNA in vascular remodeling and inflammation. J Am Coll Cardiol. 2015;65:2314-2327.
  24. McDonald RA, White KM, Wu J, et al. miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation. Eur Heart J. 2013;34:1636-1643.
  25. Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579-1588.
  26. Maegdefessel L, Azuma J, Toh R, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4:122ra22.
  27. Koroleva J, Nazarenko M, Kucher A. Role of microRNA in Development of Instability of Atherosclerotic Plaques. Biochemistry (Moscow). 2017;82:1380-1390. https://doi.org/10.1134/S0006297917110165

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.