The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ionova Z.I.

Pavlov First Saint Petersburg State Medical University

Berkovich O.A.

Pavlov First Saint Petersburg State Medical University

Belyaeva O.D.

Pavlov First Saint Petersburg State Medical University

Zaraisky M.I.

Mechnikov North-Western State Medical University

Kolodina D.A.

Pavlov First Saint Petersburg State Medical University

Serum expression of microRNA-21, microRNA-125a, microRNA-125b, microRNA-214 in coronary artery disease patients

Authors:

Ionova Z.I., Berkovich O.A., Belyaeva O.D., Zaraisky M.I., Kolodina D.A.

More about the authors

Journal: Russian Cardiology Bulletin. 2025;20(2): 13‑19

Read: 781 times


To cite this article:

Ionova ZI, Berkovich OA, Belyaeva OD, Zaraisky MI, Kolodina DA. Serum expression of microRNA-21, microRNA-125a, microRNA-125b, microRNA-214 in coronary artery disease patients. Russian Cardiology Bulletin. 2025;20(2):13‑19. (In Russ.)
https://doi.org/10.17116/Cardiobulletin20252002113

Recommended articles:
Myocardial infa­rction in young age. Russian Journal of Preventive Medi­cine. 2024;(11):77-84
Radionuclide methods in analysis of myocardial perfusion and meta­bolic acti­vity. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2024;(4):12-19
Reclassification of ischemic heart disease epidemiological criteria. Russian Journal of Preventive Medi­cine. 2024;(12):61-68

References:

  1. Polyakova EA, Zaraiskii MI, Mikhaylov EN. Association of myocardial and serum miRNA expression patterns with the presence and extent of coronary artery disease: A cross-sectional study. International journal of cardiology. 2020; 322: 9-15. 
  2. O’Sullivan JW, Ashley EA, Elliott PM. Polygenic risk scores for the prediction of cardiometabolic disease. European Heart Journal. 2023; 44(2): 89-99.  https://doi.org/10.1093/eurheartj/ehac648
  3. Liu T, Liu D, Guan S, Dong M. Diagnostic role of circulating MiR-21 in colorectal cancer: a update meta-analysis. Ann. Med. 2021; 53(1): 87-102.  https://doi.org/10.1080/07853890.2020.1828617
  4. Chen YT, Wong LL, Liew OW, Richards AM. Heart Failure with Reduced Ejection Fraction (HFrEF) and Preserved Ejection Fraction (HFpEF): The Diagnostic Value of Circulating MicroRNAs. Cells. 2019; 8(12):1651. https://doi.org/10.3390/cells8121651
  5. Gareev I.F., Beylerli O.A., Khasanova E.R., Beylerli A.T. Micro-RNA in the diagnosis and treatment of coronary heart disease//Medical Bulletin of Bashkortostan. 2019. №3 (81).
  6. Lozano-Velasco E, Inácio JM, Sousa I. miRNAs in Heart Development and Disease. Int J Mol Sci. 2024;25(3):1673. https://doi:10.3390/ijms25031673.PMID:38338950
  7. Smelov P. A., Nikitina S. Yu. (ed.) Healthcare in Russia. 2021. – Moscow: Stat.sat./Rosstat, 2021.
  8. Zasada W, Bobrowska B, Plens K. Acute myocardial infarction in young patients. Kardiol Pol. 2021; 79(10): 1093-1098. https://doi.org/10.33963/KP.a2021.0099
  9. Wu WY, Berman AN, Biery D. Recent Trends in Acute Myocardial Infarction Among the Young. Recent Curr Opin Cardiol. 2020; 35(5): 524-530.  https://doi.org/10.1097/HCO.0000000000000781
  10. Jaguszewski M, Osipova J, Ghadri J-R, Napp LC. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J. 2014; 35 (15): 999-1006. https://doi.org/10.1093/eurheartj/eht392
  11. Gager GM, Eyileten C, Postula M. Association Between the Expression of MicroRNA-125b and Survival in Patients With Acute Coronary Syndrome and Coronary Multivessel Disease. J. Front Cardiovasc Med. 2022; 8(9): 948006. https://doi.org/10.3389/fcvm.2022.948006
  12. Hueso M, Griñán R, Mallen A. MiR-125b downregulates macrophage scavenger receptor type B1 and reverse cholesterol transport. Biomed Pharmacother. 2022; 146: 112596. https://doi.org/10.1016/j.biopha.2021.112596
  13. Vigili de Kreutzenberg S, Giannella A, Ceolotto G. A miR-125/Sirtuin-7 pathway drives the pro-calcific potential of myeloid cells in diabetic vascular disease. Diabetologia. 2022; 65 (9): 1555-1568. https://doi.org/10.1007/s00125-022-05733-2
  14. Lv F. Long non-coding RNA MALAT1 and its target microRNA-125b associate with disease risk, severity, and major adverse cardiovascular event of coronary heart disease. J Clin Lab Anal. 2021. PMID:33660877
  15. Zhu Y, Zhu Y, Liu Y, Liu Y, Chen X. Long noncoding RNA metastasis-associated lung adenocarcino-ma transcript 1 correlates with microRNA-125b/microRNA-146a/microRNA-203 and predicts 2-year restenosis risk in coronary heart disease patients. Biomark Med. 2021; 15 (4): 257-271.  https://doi.org/10.2217/bmm-2020-0715
  16. Saadatian Z, Mansoori Y, Nariman-Saleh-Fam L. Peripheral blood mononuclear cells expression of miR-200c, miR-125b, miR-27b, miR-203, and miR-155 in patients with significant or insignificant coronary artery stenosis. Sci Rep. 2023; 13 (1): 18438. https://doi.org/10.1038/s41598-023-45146-8
  17. Varga ZV, Zvara A, Faragó N. MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs. Am J Physiol Heart Circ Physiol. 2014; 307 (2): 216-227.  https://doi.org/10.1152/ajpheart.00812.2013
  18. Roffe-Vazquez DN, Huerta-Delgado AS, Castillo EC. Correlation of Vitamin D with Inflammatory Cytokines, Atherosclerotic Parameters, and Lifestyle Factors in the Setting of Heart Failure: A 12-Month Follow-Up Study. International journal of molecular sciences. 2019; 20 (22): 5811.
  19. Ganguly R, Khanal S, Mathias A. TSP-1 (Thrombospondin-1) Deficiency Protects ApoE-/- Mice Against Leptin-Induced Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2021; 41 (2): e112-e127.
  20. Lisse TS, Adams JS, Hewison M. Vitamin D and MicroRNAs in Bone. Crit Rev Eukaryot Gene Expr. 2013;23(3):195—214. 
  21. Krittanawon C, Liu Y, Mahtta D. Non-traditional risk factors and the risk of myocardial infarction in the young in the US population-based cohort. Int J Cardiol Heart Vasculature. 2020; 30.  https://doi.org/10.1016/j.ijcha.2020.100634
  22. Gulati S, Misra A, Tiwari R, Sharma M, Pandey RM, Upadhyay AD. The influence of polymorphisms of fat mass and obesity (FTO, rs9939609) and vitamin D receptor (VDR, BsmI, TaqI, ApaI, FokI) genes on weight loss by diet and exercise interventions in non-diabetic overweight/obese Asian Indians in North India. Eur J Clin Nutr. 2020; 74 (4): 604-612.  https://doi.org/10.1038/s41430-020-0560-4
  23. Amin MMJ, Trevelyan CJ, Turner NA. MicroRNA-214 in Health and Disease. Cells. 2021; 23;10(12):3274. https://doi.org/10.3390/cells10123274
  24. Gopalakrishnan A, Sivadasanpillai H, Ganapathi S. Clinical profile & long-term natural history of symptomatic coronary artery disease in young patients (<30 yr). Indian J Med Res. 2020; 152 (3); 263-272.  https://doi.org/10.4103/ijmr.IJMR_1090_18
  25. Stable coronary heart disease: Clinical recommendations – 2020//Russian Journal of Cardiology, 2020, vol. 25, No. 11, pp. 40-76. 

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.