The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ramaniuk T.I.

Philips LLC

Pozdnyakov D.Yu.

Philips LLC

Mushenok F.B.

Philips Innovation Laboratories Rus

Artificial intelligence and machine learning in intensive care unit

Authors:

Ramaniuk T.I., Pozdnyakov D.Yu., Mushenok F.B.

More about the authors

Read: 3262 times


To cite this article:

Ramaniuk TI, Pozdnyakov DYu, Mushenok FB. Artificial intelligence and machine learning in intensive care unit. Russian Journal of Anesthesiology and Reanimatology. 2021;(4):97‑104. (In Russ.)
https://doi.org/10.17116/anaesthesiology202104197

Recommended articles:
Difficult intu­bation risk asse­ssment in bariatric surgery. Russian Journal of Anesthesiology and Reanimatology. 2025;(1):62-68
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36

References:

  1. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlapbach LJ, Reinhart K, Kissoon N. The global burden of pediatric and neonatal sepsis: a systematic review. The Lancet. Respiratory Medicine. 2018;6(3):223-230.  https://doi.org/10.1016/S2213-2600(18)30063-8
  2. Cheng L-F, Darnell G, Chivers C, Draugelis M, Li K, Engelhardt B. Sparse multi-output Gaussian processes for medical time series prediction. BMC Medical Informatics and Decision Making. 2020;20(1):152.  https://doi.org/10.1186/s12911-020-1069-4
  3. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. The New England Journal of Medicine. 2001;345(19):1368-1377. https://doi.org/10.1056/NEJMoa010307
  4. Mao Q, Jay M, Hoffman JL, Calvert J, Barton C, Shimabukuro D, Shieh L, Chettipally U, Fletcher G, Kerem Y, Zhou Y, Das R. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open. 2018;8(1):e017833. https://doi.org/10.1136/bmjopen-2017-017833
  5. Lizotte DJ, Laber EB. Multi-objective Markov decision processes for data-driven decision support. Journal of Machine Learning Research: JMLR. 2016;17:211. 
  6. Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, Stamm C, Hofmann T, Falk V, Eickhoff C. Machine learning for ral-time prediction of complications in critical care: a retrospective study. The Lancet. Respiratory Medicine. 2018;6(12):905-914.  https://doi.org/10.1016/S2213-2600(18)30300-X
  7. Subbe CP, Duller B, Bellomo R. Effect of an automated notification system for deteriorating ward patients on clinical outcomes. Critical Care. 2017;21(1):52.  https://doi.org/10.1186/s13054-017-1635-z
  8. Johnson AE, Pollard T. J, Shen L, Lehman L-W. H, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA. Mark RG. Mimic-III, a freely accessible critical care database. Scientific Data. 2016;3:160035. https://doi.org/10.1038/sdata.2016.35
  9. Vincent JL, Martin GS, Levy MM. QSOFA does not replace SIRS in the definition of sepsis. Critical Care. 2016;20(1):210.  https://doi.org/10.1186/s13054-016-1389-z
  10. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, Vincent JL. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Critical Care Medicine. 2013;41(3):791-799.  https://doi.org/10.1097/CCM.0b013e3182742e8b
  11. Cheng L-F, Prasad N, Engelhardt BE. An Optimal Policy for Patient Laboratory Tests in Intensive Care Units. Pacific Symposium on Biocomputing. 2019;24:320-331. 
  12. Ren O, Johnson A, Lehman E, Komorowski M, Aboab J, Fengyi Tang, Shahn Z, Sow D, Mark R, Li-Wei Lehman. Predicting and Understanding Unexpected Respiratory Decompensation in Critical Care Using Sparse and Heterogeneous Clinical Data. IEEE International Conference on Healthcare Informatics (ICHI). New York; 2018;144-151.  https://doi.org/10.1109/ICHI.2018.00024
  13. Shearer C. The CRISP-DM model: the new blueprint for data mining. Journal of Data Warehousing. 2000;5:13-22. 
  14. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801-810.  https://doi.org/10.1001/jama.2016.0287
  15. Snow-cholera-map-1.jpg  https://en.wikipedia.org/wiki/File:Snow-cholera-map-1.jpg
  16. 500 Person Gender-Height-Weight-Body Mass Index https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.