The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kryukov A.I.

Sverzhevsky Research Clinical Institute of Otorhinolaryngology

Sudarev P.A.

Sverzhevsky Research Institute of Clinical Otorhinolaryngology Moscow Department of Healthcare

Romanenko S.G.

Sverzhevky Research Clinical Institute of Otorhinolaryngology

Kurbanova D.I.

Sverzhevsky Research Clinical Institute of Otorhinolaryngology

Lesogorova E.V.

Sverzhevsky Research Clinical Institute of Otorhinolaryngology

Krasilnikova E.N.

Sverzhevsky Research Clinical Institute of Otorhinolaryngology

Pavlikhin O.G.

L.I. Sverzhevskiy Research and Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department

Ivanova A.A.

Rubedo LLC

Osadchiy A.P.

Rubedo LLC

Shevyrina N.G.

Rubedo LLC

Diagnosis of benign laryngeal tumors using neural network

Authors:

Kryukov A.I., Sudarev P.A., Romanenko S.G., Kurbanova D.I., Lesogorova E.V., Krasilnikova E.N., Pavlikhin O.G., Ivanova A.A., Osadchiy A.P., Shevyrina N.G.

More about the authors

Journal: Russian Bulletin of Otorhinolaryngology. 2024;89(3): 24‑28

Read: 1151 times


To cite this article:

Kryukov AI, Sudarev PA, Romanenko SG, et al. . Diagnosis of benign laryngeal tumors using neural network. Russian Bulletin of Otorhinolaryngology. 2024;89(3):24‑28. (In Russ.)
https://doi.org/10.17116/otorino20248903124

Recommended articles:
Lobu­lar hema­ngioma of the vestibular larynx. Russian Bulletin of Otorhinolaryngology. 2024;(5):67-73
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36
Soli­tary fibrous tumor of the oropharynx. P.A. Herzen Journal of Onco­logy. 2025;(1):48-52
Arti­ficial inte­lligence-based software for digi­tal asse­ssment of repa­rative bone tissue rege­neration. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2025;(1):19-24

References:

  1. Paderno A, Gennarini F, Sordi A, Montenegro C, Lancini D, Villani FP, Moccia S, Piazza C. Artificial intelligence in clinical endoscopy: Insights in the field of videomics. Frontiers in Surgery. 2022;9:933297. https://orcid.org/10.3389/fsurg.2022.933297
  2. Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z. Deep Learning and Its Applications in Biomedicine. Genomics Proteomics Bioinformatics. 2018;16(1):17-32.  https://doi.org/10.1016/j.gpb.2017.07.003
  3. Suganyadevi S, Seethalakshmi V, Balasamy K. A review on deep learning in medical image analysis. International Journal of Multimedia Information Retrieval. 2022;11(1):19-38.  https://doi.org/10.1007/s13735-021-00218-1
  4. Paches AI. Opukholi golovy i shei: klinicheskoe rukovodstvo. 5-e izd., dop. i pererab. M.: Prakticheskaya meditsina; 2013. (In Russ.).
  5. Cheremisina OV, Choinzonov EL. Potentials of endoscopic diagnosis of precencer diseases and cancer of the larynx. Sibirskij onkologicheskij zhurnal. 2007;3(23):5-9. (In Russ.). https://cyberleninka.ru/article/n/vozmozhnosti-endoskopicheskoy-diagnostiki-predopuholevyh-zabolevaniy-i-raka-gortani-v-sovremennoy-onkologii/viewer
  6. Cho WK, Lee YJ, Joo HA, Jeong IS, Choi Y, Nam SY, Kim SY, Choi SH. Diagnostic Accuracies of Laryngeal Diseases Using a Convolutional Neural Network-Based Image Classification System. Laryngoscope. 2021;131(11):2558-2566. https://doi.org/10.1002/lary.29595
  7. Larsen C.F., Pedersen M. Comparison of convolutional neural networks for classification of vocal fold nodules from high-speed video images. European Archives of Oto-Rhino-Laryngology. 2023;280:2365-2371. https://doi.org/10.1007/s00405-022-07736-6
  8. Esmaeili N, Sharaf E, Gomes Ataide EJ, Illanes A, Boese A, Davaris N, Arens C, Navab N, Friebe M. Deep Convolution Neural Network for Laryngeal Cancer Classification on Contact Endoscopy-Narrow Band Imaging. Sensors (Basel). 2021;21(23):8157. https://orcid.org/10.3390/s21238157
  9. Ren J, Jing X, Wang J, Ren X, Xu Y, Yang Q, Ma L, Sun Y, Xu W, Yang N, Zou J, Zheng Y, Chen M, Gan W, Xiang T, An J, Liu R, Lv C, Lin K, Zheng X, Lou F, Rao Y, Yang H, Liu K, Liu G, Lu T, Zheng X, Zhao Y. Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique. Laryngoscope. 2020;130(11):E686-E693. https://orcid.org/10.1002/lary.28539
  10. Xiong H, Lin P, Yu JG, Ye J, Xiao L, Tao Y, Jiang Z, Lin W, Liu M, Xu J, Hu W, Lu Y, Liu H, Li Y, Zheng Y, Yang H. Computer-aided diagnosis of laryngeal cancer via deep learning based on laryngoscopic images. eBioMedicine. 2019;48:92-99.  https://orcid.org/10.1016/j.ebiom.2019.08.075
  11. Azam MA, Sampieri C, Ioppi A, Africano S, Vallin A, Mocellin D, Fragale M, Guastini L, Moccia S, Piazza C, Mattos LS, Peretti G. Deep Learning Applied to White Light and Narrow Band Imaging Videolaryngoscopy: Toward Real-Time Laryngeal Cancer Detection. Laryngoscope. 2022;132(9):1798-1806. https://orcid.org/10.1002/lary.29960
  12. Hu R, Zhong Q, Xu ZG, Huang LY, Cheng Y, Wang YR, He YD, Cheng Y. Application of deep convolutional neural networks in the diagnosis of laryngeal squamous cell carcinoma based on narrow band imaging endoscopy. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2021;56(5):454-458.  https://orcid.org/10.3760/cma.j.cn115330-20200927-00773

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.