The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Vasilev Yu.A.

Research and Practical Clinical Center for Diagnostic and Telemedicine Technologies

Tyrov I.A.

Moscow Health Care Department

Vladzymirskyy A.V.

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department

Shulkin I.M.

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department

Arzamasov K.M.

Research and Practical Clinical Center for Diagnostic and Telemedicine Technologies

Autonomous artificial intelligence for sorting the preventive imaging studies’ results

Authors:

Vasilev Yu.A., Tyrov I.A., Vladzymirskyy A.V., Shulkin I.M., Arzamasov K.M.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2024;27(7): 23‑29

Read: 1131 times


To cite this article:

Vasilev YuA, Tyrov IA, Vladzymirskyy AV, Shulkin IM, Arzamasov KM. Autonomous artificial intelligence for sorting the preventive imaging studies’ results. Russian Journal of Preventive Medicine. 2024;27(7):23‑29. (In Russ.)
https://doi.org/10.17116/profmed20242707123

Recommended articles:
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36
Modern methods of diagnosis and treatment of lacrimal stenosis. Lite­rature review. Russian Bulletin of Otorhinolaryngology. 2024;(5):58-62
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48

References:

  1. Bogorodskaya EM, Slogotskaya LV, Tuktarova LM, et al. Screening for Tuberculosis Infection in Risk Groups in the Adult Population of Moscow. Tuberkulez i bolezni legkikh. 2023;101(4):13-21. (In Russ.). https://doi.org/10.58838/2075-1230-2023-101-4-13-21
  2. Kobyakova OS, Kulikov ES, Malykh RD, et al. Strategies for the prevention of chronic non-communicable diseases: a modern look at the problem. Kardiovaskulyarnaya terapiya i profilaktika. 2019;18(4):92-98. (In Russ.). https://doi.org/10.15829/1728-8800-2019-4-92-98
  3. Livzan MA, Lyalyukova EA, Petrosian VYu, Chernysheva EN. Screening of malignant neoplasms: the state of the problem in Russia and the world. Eksperimental’naya i klinicheskaya gastroenterologiya. 2023;(3):5-16. (In Russ.). https://doi.org/10.31146/1682-8658-ecg-211-3-5-16
  4. Tsybikova EB, Midorenko DA, Lapshina IS, Kotlovsky MYu. Organization of screening in TB epidemic foci in the subjects of the Russian Federation with a low incidence of tuberculosis. Social’nye aspekty zdorov’a naselenia. 2023;69(2):11. (In Russ.). https://doi.org/10.21045/2071-5021-2023-69-2-11
  5. Mohan G, Chattopadhyay S. Cost-effectiveness of Leveraging Social Determinants of Health to Improve Breast, Cervical, and Colorectal Cancer Screening: A Systematic Review. JAMA Oncology. 2020;6(9):1434-1444. https://doi.org/10.1001/jamaoncol.2020.1460
  6. Golubev NA, Ogryzko EV, Tyurina EM, et al. Features of the development of the radiation diagnostics service in the Russian Federation for 2014—2019. Sovremennye problemy zdravookhraneniya i meditsinskoi statistiki. 2021;2:356-376. (In Russ.). https://doi.org/10.24412/2312-2935-2021-2-356-376
  7. Tyurin IE. Radiology in the Russian Federation. Onkologicheskii zhurnal: luchevaya diagnostika, luchevaya terapiya. 2018;1(4):43-51. (In Russ.).
  8. Samofalov DA, Chigrina VP, Tyufilin DS, et al. Professional burnout and quality of life of physicians in the Russian Federation in 2021. Social’nye aspekty zdorov’a naselenia. 2023;69(1):1. (In Russ.).
  9. Shelekhov PV. Personnel situation in radiative diagnostics. Sovremennye problemy zdravookhraneniya i meditsinskoi statistiki. 2019;1:265-275. (In Russ.).
  10. Aggarwal R, Sounderajah V, Martin G, et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digital Medicine. 2021;4(1):65.  https://doi.org/10.1038/s41746-021-00438-z
  11. Meldo AA, Utkin LV, Trofimova TN. Artificial intelligence in medicine: current state and main directions of development of the intellectual diagnostics. Luchevaya diagnostika i terapiya. 2020;11(1):9-17. (In Russ.). https://doi.org/10.22328/2079-5343-2020-11-1-9-17
  12. Vladzymyrskyy AV, Kudryavtsev ND, Kozhikhina DD, et al. Effectiveness of using artificial intelligence technologies for dual descriptions of the results of preventive lung examinations. Russian Journal of Preventive Medicine. 2022;25(7):7-15. (In Russ.). https://doi.org/10.17116/profmed2022250717
  13. Blinov DS, Lobishcheva AE, Varfolomeeva AA, et al. Chest X-rays analysis by neural network: contemporary achievements and causes of misinterpretation. Problemy standartizatsii v zdravookhranenii. 2019;(9-10):4-9. (In Russ.). https://doi.org/10.26347/1607-2502201909-10004-009
  14. Zukov RA, Safontsev IP, Klimenok MP, et al. Artificial intelligence in the diagnosis of lung cancer. Experience of the Krasnoyarsk Region. Voprosy onkologii. 2023;69(3S):94-95. (In Russ.).
  15. Kurdyumov DA, Kashin AV, Ryabov NYu, et al. Experience in the application of artificial intelligence technologies for the development of preventive health care on the example of the Kirov region. Menedzher zdravookhraneniya. 2023;6:62-69. (In Russ.). https://doi.org/10.21045/1811-0185-2023-6-62-69
  16. Roitberg PG, Blinov DS, Cheremisin VM. Integrating AI technologies in radiology workflows. Problemy standartizatsii v zdravookhranenii. 2020;(9-10):29-33. (In Russ.). https://doi.org/10.26347/1607-2502202009-10029-033
  17. Padalko MA, Naumov AM, Nazarikov SI, Lushnikov AA. Using artificial intellect for diagnosis of tuberculosis and oncologic diseases. Tuberkulez i bolezni legkikh. 2019;97(11):62-62. (In Russ.). https://doi.org/10.21292/2075-1230-2019-97-11-62-62
  18. Smolnikova UA, Gavrilov PV, Yablonskiy PK. Diagnostic Efficiency of Various Systems for Automatic Analysis of Radiographs in the Detection of Lung Nodule. Radiologiya — praktika. 2022;(3):51-66. (In Russ.). https://doi.org/10.52560/2713-0118-2022-3-51-66
  19. Vasilev YuA, Vladzymyrskyy AV. Komp’yuternoe zrenie v luchevoj diagnostike: pervy’j e’tap Moskovskogo e’ksperimenta: monografiya. Pod red. Vasil’eva YuA, Vladzimirskogo AV. M.: Izdatel`skie resheniya; 2022. (In Russ.).
  20. Prikaz Ministerstva zdravooxraneniya Rossijskoj Federacii ot 07.09.2020 No. 947n «Ob utverzhdenii Poryadka organizacii sistemy` dokumentooborota v sfere oxrany’ zdorov’ya v chasti vedeniya medicinskoj dokumentacii v forme e`lektronny`x dokumentov». Accessed May 15, 2024. (In Russ.). https://publication.pravo.gov.ru/Document/View/0001202101120007
  21. Vasilyv YuA, Tyrov IA, Vladzymyrskyy AV, et al. Double-reading mammograms using artificial intelligence technologies: A new model of mass preventive examination organization. Digital Diagnostics. 2023;4(2):93-104. (In Russ.). https://doi.org/10.17816/DD321423
  22. Arzamasov K, Vasilev Y, Vladzymyrskyy A, et al. An International Non-Inferiority Study for the Benchmarking of AI for Routine Radiology Cases: Chest X-ray, Fluorography and Mammography. Healthcare. 2023;11(12):1684. https://doi.org/10.3390/healthcare11121684
  23. Bossuyt PM, Reitsma JB, Bruns DE, et al. For the STARD Group. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Radiology. 2015;277(3):826-832.  https://doi.org/10.1148/radiol.2015151516
  24. Bergen TA, Pukhalsky AN, Sinitsyn VE, et al. New tools in organization of radiology examinations in oncology patients. Vestnik Roszdravnadzora. 2022; 6:49-56. (In Russ.).
  25. Drokin IS, Ericheva EV, Bukhvalov OL, et al. Experience in developing and implementing an oncological formations searching system using artificial intelligence with the example of X-ray computed tomography of the lungs. Vrach i informatsionnye tekhnologii. 2019;3:48-57. (In Russ.).
  26. Karmazanovsky GG, Kondratyev EV, Gruzdev IS, et al. Modern radiation diagnostics and intelligent personalized technologies in hepatopancreatology. Vestnik Rossiiskoi akademii meditsinskikh nauk. 2022;77(4):245-253. (In Russ.). https://doi.org/10.15690/vramn2053
  27. Codlin AJ, Dao TP, Vo LNQ, et al. Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis. Scientific Reports. 2021;11(1):23895. https://doi.org/10.1038/s41598-021-03265-0
  28. Bradley SH, Bhartia BS, Callister ME, et al. Chest X-ray sensitivity and lung cancer outcomes: a retrospective observational study. The British Journal of General Practice. 2021;71(712):e862-e868. https://doi.org/10.3399/BJGP.2020.1099
  29. Hossain R, Wu CC, de Groot PM, et al. Missed Lung Cancer. Radiologic Clinics of North America. 2018;56(3):365-375. 
  30. Vasilev Y, Vladzymyrskyy A, Omelyanskaya O, et al. AI-Based CXR First Reading: Current Limitations to Ensure Practical Value. Diagnostics. 2023; 13(8):1430. https://doi.org/10.3390/diagnostics13081430
  31. Vasilev YuA, Vladzymyrskyy AV, Omelyanskaya OV, et al. Ocenka zrelosti tekhnologij iskusstvennogo intellekta dlya zdravoohraneniya: metodicheskie rekomendacii. M.: Nauchno-prakticheskij klinicheskij centr diagnostiki i telemedicinskix texnologij Departamenta zdravooxraneniya goroda Moskvy; 2023. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.