The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Samoilova I.G.

Siberian State Medical University

Matveeva M.V.

Siberian State Medical University

Galyukova D.E.

Siberian State Medical University

Biochemical markers of autism

Authors:

Samoilova I.G., Matveeva M.V., Galyukova D.E.

More about the authors

Read: 3372 times


To cite this article:

Samoilova IG, Matveeva MV, Galyukova DE. Biochemical markers of autism. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(1):55‑59. (In Russ.)
https://doi.org/10.17116/jnevro202412401155

Recommended articles:
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Pera­mpanel treatment in IQSEC2-associated epileptic ence­phalopathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):143-149
Inflammatory aging. Part 1. The principal biochemical mechanisms. Russian Journal of Preventive Medi­cine. 2024;(12):145-150
Inflammatory aging. Part 2. Are there diagnostic biomarkers available. Russian Journal of Preventive Medi­cine. 2025;(1):89-95

References:

  1. World Health Organization, ICD-10: International Statistical Classification of Diseases and Related Health Problems 10th Revision 1992. https://icd.who.int/en
  2. Kazakovtsev BA, Demcheva NK, Yazdovskaya AV, et al. Psikhiatricheskaya Pomoshch Naseleniyu Rossiiskoi Federatsii V 2019 Godu: Analiticheskii Obzor. M.: FGBU «NMITsPN im. V.P. Serbskogo» Minzdrava Rossii. 2020. (In Russ.).
  3. Zeidan J, Fombonne E, Scorah J, et al. Global Prevalence of Autism: A Systematic Review Update. Autism Research. 2022;15(5):778-790.  https://doi.org/10.1002/aur.2696
  4. El-Ansary A, Chirumbolo S, Bhat RS, et al. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther. 2020;24(1):31-48.  https://doi.org/10.1007/S40291-019-00430-0
  5. Prata J, Machado AS, von Doellinger O, et al. The Contribution of Inflammation to Autism Spectrum Disorders: Recent Clinical Evidence. Methods Mol Biol. 2019;2011:493-510.  https://doi.org/10.1007/978-1-4939-9554-7_29
  6. Ren K, Dubner R. Interactions between the Immune and Nervous Systems in Pain. Nat Med. 2010;16(11):1267-1276. https://doi.org/10.1038/Nm.2234
  7. Chez MG, Dowling T, Patel PB, et al. (2007) Elevation of Tumor Necrosis Factor-Alpha in Cerebrospinal Fluid of Autistic Children. Pediatr Neurol. 2007;36(6):361-365.  https://doi.org/10.1016/j.Pediatrneurol.2007.01.012
  8. Olmos G, Lladó J. Tumor Necrosis Factor Alpha: A Link between Neuroinflammation and Excitotoxicity. Mediators Inflamm. 2014;2014:861231. https://doi.org/10.1155/2014/861231
  9. Li X, Chauhan A, Sheikh AM, Patil S, et al. Elevated Immune Response in the Brain of Autistic Patients. J Neuroimmunol. 2009;207(1-2):111-116.  https://doi.org/10.1016/j.Jneuroim.2008.12.002
  10. Xie J, Huang L, Li X, et al. Immunological Cytokine Profiling Identifies TNF-α as a Key Molecule Dysregulated in Autistic Children. Oncotarget. 2017;8(47):82390-82398. https://doi.org/10.18632/Oncotarget.19326
  11. Ghaffari MA. Mousavinejad E, Riahi F, et al. Increased Serum Levels of Tumor Necrosis Factor-Alpha, Resistin, and Visfatin in the Children with Autism Spectrum Disorders: A Case-Control Study. Neurology Research International. 2016;2016:9060751. https://doi.org/10.1155/2016/9060751
  12. Guloksuz SA, Abali O, Aktas Cetin E, et al. Elevated Plasma Concentrations of S100 Calcium-Binding Protein B and Tumor Necrosis Factor Alpha in Children with Autism Spectrum Disorders. Braz J Psychiatry. 2017;39(3):195-200.  https://doi.org/10.1590/1516-4446-2015-1843
  13. Jensen AR, Lane AL, Werner BA, et al. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol Diagn Ther. 2022;26(5):483-495.  https://doi.org/10.1007/S40291-022-00600-7
  14. Goines PE, Croen LA, Braunschweig D, et al. Increased Midgestational IFN-γ, IL-4 and IL-5 in Women Bearing a Child with Autism: A Case-Control Study. Mol Autism. 2011;2:13.  https://doi.org/10.1186/2040-2392-2-13
  15. Han X. Lipidomics for Studying Metabolism. Nat Rev Endocrinol. 2016;12(11):668-679.  https://doi.org/10.1038/Nrendo.2016.98
  16. Gloyn AL, Faber JH, Malmodin D, et al. Thanabalasingham G, Lam F, Ueland PM, McCarthy MI, Owen KR, Baunsgaard D. Metabolic Profiling in Maturity-Onset Diabetes of the Young (MODY) and Young Onset Type 2 Diabetes Fails to Detect Robust Urinary Biomarkers. PLoS One. 2012;7(7):E40962. https://doi.org/10.1371/Journal.Pone.0040962
  17. Rauschert S, Uhl O, Koletzko B, et al. Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults. J Clin Endocrinol Metab. 2016;101(3):871-879.  https://doi.org/10.1210/Jc.2015-3525
  18. Yu D, Shu XO, Rivera ES, et al. Urinary Levels of Trimethylamine-N-Oxide and Incident Coronary Heart Disease: A Prospective Investigation Among Urban Chinese Adults. J Am Heart Assoc. 2019;8(1):E010606. https://doi.org/10.1161/JAHA.118.010606
  19. Tallberg T, Dabek J, Hallamaa R, Atroshi F. Lipidomics: the function of vital lipids in embryogenesis preventing autism spectrum disorders, treating sterile inflammatory diatheses with a lymphopoietic central nervous system component. J Lipids. 2011;2011:137175. https://doi.org/10.1155/2011/137175
  20. Bazinet RP, Layé S. Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease. Nat Rev Neurosci. 2014;15(12):771-785.  https://doi.org/10.1038/Nrn3820
  21. Petrov AM, Kasimov MR, Zefirov AL. Cholesterol in the Pathogenesis of Alzheimer’s, Parkinson’s Diseases and Autism: Link to Synaptic Dysfunction. Acta Naturae. 2017;9(1):26-37. 
  22. Gillberg C, Fernell E, Kočovská E, et al. The Role of Cholesterol Metabolism and Various Steroid Abnormalities in Autism Spectrum Disorders: A Hypothesis Paper. Autism Res. 2017;10(6):1022-1044. https://doi.org/10.1002/Aur.1777
  23. Björkhem I. Crossing the Barrier: Oxysterols as Cholesterol Transporters and Metabolic Modulators in the Brain. J Intern Med. 2006;260(6):493-508.  https://doi.org/10.1111/j.1365-2796.2006.01725.x
  24. Grayaa S, Zerbinati C, Messedi M, et al. Plasma Oxysterol Profiling in Children Reveals 24-Hydroxycholesterol as a Potential Marker for Autism Spectrum Disorders. Biochimie. 2018;153:80-85.  https://doi.org/10.1016/j.Biochi.2018.04.026
  25. Kałużna-Czaplińska J, Żurawicz E, Jóźwik J. Chromatographic Techniques Coupled with Mass Spectrometry for the Determination of Organic Acids in the Study of Autism. Journal of Chromatography B. 2014;964:128-135.  https://doi.org/10.1016/j.jchromb.2013.10.026
  26. Kałużna-Czaplińska J, Socha E, Rynkowski J. B Vitamin Supplementation Reduces Excretion of Urinary Dicarboxylic Acids in Autistic Children. Nutr Res. 2011;31(7):497-502.  https://doi.org/10.1016/j.Nutres.2011.06.002
  27. Puig-Alcaraz C, Fuentes-Albero M, Cauli O. Relationship between Adipic Acid Concentration and the Core Symptoms of Autism Spectrum Disorders. Psychiatry Res. 2016;242:39-45.  https://doi.org/10.1016/j.Psychres.2016.05.027
  28. Hill AP, Zuckerman KE, Fombonne E. Obesity and Autism. Pediatrics. 2015;136(6):1051-1061. https://doi.org/10.1542/peds.2015-1437
  29. Broder-Fingert S, Brazauskas K, Lindgren K, et al. Prevalence of Overweight and Obesity in a Large Clinical Sample of Children with Autism. Academic Pediatrics. 2014;14(4):408-414.  https://doi.org/10.1016/j.acap.2014.04.004
  30. Skalny AV, Skalnaya MG, Bjørklund G, et al. Mercury as a Possible Link between Maternal Obesity and Autism Spectrum Disorder. Med Hypotheses. 2016;91:90-94.  https://doi.org/10.1016/j.Mehy.2016.04.021
  31. Surén P, Gunnes N, Roth C, Bresnahan M, et al. Parental Obesity and Risk of Autism Spectrum Disorder. Pediatrics. 2014;133(5):E1128-1138. https://doi.org/10.1542/Peds.2013-3664
  32. Riikonen R, Makkonen I, Vanhala R, et al. Cerebrospinal Fluid Insulin-like Growth Factors IGF-1 and IGF-2 in Infantile Autism. Dev Med Child Neurol. 2006;48(9):751-755.  https://doi.org/10.1017/S0012162206001605
  33. Mills JL, Hediger ML, Molloy CA, et al. Elevated Levels of Growth-Related Hormones in Autism and Autism Spectrum Disorder. Clin Endocrinol (Oxf). 2007;67(2):230-237.  https://doi.org/10.1111/j.1365-2265.2007.02868.x
  34. Mraz KD, Dixon J, Dumont-Mathieu T, Fein D. Accelerated Head and Body Growth in Infants Later Diagnosed with Autism Spectrum Disorders: A Comparative Study of Optimal Outcome Children. J Child Neurol. 2009;24(7):833-845.  https://doi.org/10.1177/0883073808331345
  35. Modahl C, Green L, Fein D, et al. Plasma Oxytocin Levels in Autistic Children. Biol Psychiatry. 1998;43(4):270-277.  https://doi.org/10.1016/S0006-3223(97)00439-3
  36. Hollander E, Novotny S, Hanratty M, et al. Oxytocin Infusion Reduces Repetitive Behaviors in Adults with Autistic and Asperger’s Disorders. Neuropsychopharmacology. 2003;28(1):193-198.  https://doi.org/10.1038/Sj.Npp.1300021
  37. Egashira N, Mishima K, Iwasaki K, et al. New Topics in Vasopressin Receptors and Approach to Novel Drugs: Role of the Vasopressin Receptor in Psychological and Cognitive Functions. J Pharmacol Sci. 2009;109(1):44-49.  https://doi.org/10.1254/Jphs.08r14fm
  38. Boso M, Emanuele E, Politi P, et al. Reduced Plasma Apelin Levels in Patients with Autistic Spectrum Disorder. Arch Med Res. 2007;38(1):70-74.  https://doi.org/10.1016/j.Arcmed.2006.08.003
  39. Chen J, Xin K, Wei J, et al. Lower Maternal Serum 25(OH) D in First Trimester Associated with Higher Autism Risk in Chinese Offspring. J Psychosom Res. 2016;89:98-101.  https://doi.org/10.1016/j.Jpsychores.2016.08.013
  40. Vinkhuyzen AAE, Eyles DW, Burne THJ, et al. Gestational Vitamin D Deficiency and Autism Spectrum Disorder. BJPsych Open. 2017;3(2):85-90.  https://doi.org/10.1192/Bjpo.Bp.116.004077
  41. Magnusson C, Lundberg M, Lee BK, et al. Maternal Vitamin D Deficiency and the Risk of Autism Spectrum Disorders: Population-Based Study. BJPsych Open. 2016;2(2):170-172.  https://doi.org/10.1192/Bjpo.Bp.116.002675
  42. El-Ansary A, Bjørklund G, Tinkov AA, et al. Relationship between Selenium, Lead, and Mercury in Red Blood Cells of Saudi Autistic Children. Metab Brain Dis. 2017;32(4):1073-1080. https://doi.org/10.1007/S11011-017-9996-1
  43. Zhang J, Li X, Shen L, et al. Trace Elements in Children with Autism Spectrum Disorder: A Meta-Analysis Based on Case-Control Studies. J Trace Elem Med Biol. 2021;67:126782. https://doi.org/10.1016/j.Jtemb.2021.126782
  44. Li SO, Wang JL, Bjørklund G, et al. Serum Copper and Zinc Levels in Individuals with Autism Spectrum Disorders. Neuroreport. 2014;25(15):1216-1220. https://doi.org/10.1097/WNR.0000000000000251
  45. Bjorklund G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp (Wars). 2013;73(2):225-236. 
  46. Rossignol DA, Frye RE. Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Mol Psychiatry. 2012;17(3):290-314.  https://doi.org/10.1038/Mp.2010.136
  47. Weissman JR, Kelley RI, Bauman ML, et al. Mitochondrial Disease in Autism Spectrum Disorder Patients: A Cohort Analysis. PLoS One. 2008;3(11):E3815. https://doi.org/10.1371/Journal.Pone.0003815
  48. Goldenthal MJ, Damle S, Sheth S, et al. Mitochondrial Enzyme Dysfunction in Autism Spectrum Disorders; a Novel Biomarker Revealed from Buccal Swab Analysis. Biomark Med. 2015;9(10):957-965.  https://doi.org/10.2217/Bmm.15.72
  49. Goh S, Dong Z, Zhang Y, et al. Mitochondrial Dysfunction as a Neurobiological Subtype of Autism Spectrum Disorder: Evidence From Brain Imaging. JAMA Psychiatry. 2014;71(6):665-671.  https://doi.org/10.1001/Jamapsychiatry.2014.179

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.