The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Shmakova A.A.

Koltzov Institute of Developmental Biology

Semina E.V.

Lomonosov Moscow State University;
Chazov National Medical Research Centre of Cardiology

Neyfeld E.A.

Lomonosov Moscow State University

Tsygankov B.D.

Evdokimov Moscow State University of Medicine and Dentistry

Karagyaur M.N.

Lomonosov Moscow State University;
Institute for Regenerative Medicine — Lomonosov Moscow State University

An analysis of the relationship between genetic factors and the risk of schizophrenia

Authors:

Shmakova A.A., Semina E.V., Neyfeld E.A., Tsygankov B.D., Karagyaur M.N.

More about the authors

Read: 3249 times


To cite this article:

Shmakova AA, Semina EV, Neyfeld EA, Tsygankov BD, Karagyaur MN. An analysis of the relationship between genetic factors and the risk of schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(2):26‑36. (In Russ.)
https://doi.org/10.17116/jnevro202312302126

Recommended articles:
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
A role of transcription factors in pathogenic processes asso­ciated with schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):49-54
Meta­bolic syndrome and anti­psychotic therapy of schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):165-170
PANSS six-factor model. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):28-34
Clinical and immu­nological rela­tionships in patients with early schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):35-42
Clinical and psychopathological features of treatment-resistant schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):43-50

References:

  1. Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2020;396(10258):1204-1222. https://doi.org/10.1016/S0140-6736(20)30925-9
  2. Cardno AG, Gottesman II. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet. 2000;97(1):12-17. 
  3. Hilker R, Helenius D, Fagerlund B, et al. Heritability of Schizophrenia and Schizophrenia Spectrum Based on the Nationwide Danish Twin Register. Biol Psychiatry. 2018;83(6):492-498.  https://doi.org/10.1016/j.biopsych.2017.08.017
  4. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187-1192. https://doi.org/10.1001/archpsyc.60.12.1187
  5. Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467-484.  https://doi.org/10.1038/s41576-019-0127-1
  6. Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association studies. Nat Rev Methods Primers. 2021;1(1):1-21.  https://doi.org/10.1038/s43586-021-00056-9
  7. Bush WS, Moore JH. Chapter 11: Genome-Wide Association Studies. PLoS Comput Biol. 2012;8(12):e1002822. https://doi.org/10.1371/journal.pcbi.1002822
  8. Stefansson H, Ophoff RA, Steinberg S, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460(7256):744-747.  https://doi.org/10.1038/nature08186
  9. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43(10):969-976.  https://doi.org/10.1038/ng.940
  10. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421-427.  https://doi.org/10.1038/nature13595
  11. Pardiñas AF, Holmans P, Pocklington AJ, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50(3):381-389.  https://doi.org/10.1038/s41588-018-0059-2
  12. Trubetskoy V, Pardiñas AF, Qi T, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604(7906):502-508.  https://doi.org/10.1038/s41586-022-04434-5
  13. Pohlan J, Leidel BA, Lindner T. Chapter 15 — Neurogranin. In: Wu AHB, Peacock WF, eds. Biomarkers for Traumatic Brain Injury. Academic Press; 2020;211-219.  https://doi.org/10.1016/B978-0-12-816346-7.00015-4
  14. Pak JH, Huang FL, Li J, et al. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci USA. 2000;97(21):11232-11237. https://doi.org/10.1073/pnas.210184697
  15. Miyakawa T, Yared E, Pak JH et al. Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus. 2001;11(6):763-775.  https://doi.org/10.1002/hipo.1092
  16. Toulopoulou T, Picchioni M, Rijsdijk F, et al. Substantial genetic overlap between neurocognition and schizophrenia: genetic modeling in twin samples. Arch Gen Psychiatry. 2007;64(12):1348-1355. https://doi.org/10.1001/archpsyc.64.12.1348
  17. Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther. 2020;205:107426. https://doi.org/10.1016/j.pharmthera.2019.107426
  18. Mesman S, Bakker R, Smidt MP. Tcf4 is required for correct brain development during embryogenesis. Molecular and Cellular Neuroscience. 2020;106:103502. https://doi.org/10.1016/j.mcn.2020.103502
  19. Mahmoudi E, Cairns MJ. MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry. 2017;22(1):44-55.  https://doi.org/10.1038/mp.2016.150
  20. Sun G, Ye P, Murai K, et al. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun. 2011;2:529.  https://doi.org/10.1038/ncomms1532
  21. Lett TA, Chakravarty MM, Chakavarty MM, et al. The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry. 2013;18(4):443-450.  https://doi.org/10.1038/mp.2013.17
  22. Guella I, Sequeira A, Rollins B, et al. Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res. 2013;47(9):1215-1221. https://doi.org/10.1016/j.jpsychires.2013.05.021
  23. Zhao L, Li H, Guo R, et al. miR-137, a new target for post-stroke depression? Neural Regen Res. 2013;8(26):2441-2448. https://doi.org/10.3969/j.issn.1673-5374.2013.26.005
  24. Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann NY Acad Sci. 2015;1338(1):38-57.  https://doi.org/10.1111/nyas.12547
  25. Shmakova AA, Rubina KA, Anokhin KV, Tkachuk VA, Semina EV. The Role of Plasminogen Activator System in the Pathogenesis of Epilepsy. Biochemistry (Moscow). 2019;84(9):979-991.  https://doi.org/10.1134/S0006297919090013
  26. Torrico B, Shaw AD, Mosca R, et al. Truncating variant burden in high-functioning autism and pleiotropic effects of LRP1 across psychiatric phenotypes. J Psychiatry Neurosci. 2019;44(5):350-359.  https://doi.org/10.1503/jpn.180184
  27. Pollak TA, Rogers JP, Nagele RG, et al. Antibodies in the Diagnosis, Prognosis, and Prediction of Psychotic Disorders. Schizophrenia Bulletin. 2019;45(1):233-246.  https://doi.org/10.1093/schbul/sby021
  28. Zakharenko OM, Kliushnik TP, Kozlova IA, et al. Nerve growth factor auto-antibodies in the sera of mothers of schizophrenic children and children from high risk group. Zh Nevrol Psikhiatr im. S.S. Korsakova. 1999;99(3):44-46. 
  29. Shmakova OP, Androsova LV, Shmakova AA. Clinical and immunological correlations in children and adolescents with chronic mental disorders without exacerbation. Psihiatriya. 2015;65(1):17-23. (In Russ.).
  30. Hussein M, Magdy R. MicroRNAs in central nervous system disorders: current advances in pathogenesis and treatment. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2021;57(1):36.  https://doi.org/10.1186/s41983-021-00289-1
  31. Shmakova AA, Rysenkova KD, Ivashkina OI, et al. Early Induction of Neurotrophin Receptor and miRNA Genes in Mouse Brain after Pentilenetetrazole-Induced Neuronal Activity. Biochemistry (Mosc). 2021;86(10):1326-1341. https://doi.org/10.1134/S0006297921100138
  32. Semina EV, Rysenkova KD, Troyanovskiy KE, Shmakova AA, Rubina KA. MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming. Biochemistry (Mosc). 2021;86(7):785-799.  https://doi.org/10.1134/S0006297921070014
  33. Cao DD, Li L, Chan WY. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int J Mol Sci. 2016;17(6):842.  https://doi.org/10.3390/ijms17060842
  34. Semina E, Rubina K, Sysoeva V, et al. Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching. European Journal of Cell Biology. 2016;95(9):295-310.  https://doi.org/10.1016/j.ejcb.2016.05.003
  35. Shmakova AA, Balatskiy AV, Kulebyakina MA, et al. Urokinase Receptor uPAR Overexpression in Mouse Brain Stimulates the Migration of Neurons into the Cortex during Embryogenesis. Russian Journal of Developmental Biology. 2021;52(1):53-63.  https://doi.org/10.1134/S1062360421010069
  36. Shmakova AA, Rubina KA, Rysenkova KD, et al. Urokinase receptor and tissue plasminogen activator as immediate early genes in pentylenetetrazole‐induced seizures in the mouse brain. European Journal of Neuroscience. 2020;51(7):1559-1572. https://doi.org/10.1111/ejn.14584
  37. Rysenkova KD, Klimovich PS, Shmakova AA, et al. Urokinase receptor deficiency results in EGFR-mediated failure to transmit signals for cell survival and neurite formation in mouse neuroblastoma cells. Cellular Signalling. 2020;75:109741-109741. https://doi.org/10.1016/j.cellsig.2020.109741
  38. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291.  https://doi.org/10.1038/nature19057
  39. Collins AL, Kim Y, Bloom RJ, et al. Transcriptional targets of the schizophrenia risk gene MIR137. Transl Psychiatry. 2014;4(7):404-404.  https://doi.org/10.1038/tp.2014.42
  40. Rubina KA, Surkova EI, Semina EV, et al. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules. Cancers (Basel). 2015;7(3):1349-1370.
  41. Rubina KA, Semina EV, Kalinina NI, et al. Revisiting the multiple roles of T-cadherin in health and disease. European Journal of Cell Biology. 2021;100(7):151183. https://doi.org/10.1016/j.ejcb.2021.151183
  42. Lasky-Su, Bm N, B F, et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics: the Official Publication of the International Society of Psychiatric Genetics. 2008;147B(8). https://doi.org/10.1002/ajmg.b.30867
  43. Salatino-Oliveira A, Genro JP, Polanczyk G, et al. Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2015;168(3):162-169.  https://doi.org/10.1002/ajmg.b.32293
  44. Sanders SJ, Ercan-Sencicek AG, Hus V, et al. Multiple recurrent de novo copy number variations (CNVs), including duplications of the 7q11.23 Williams-Beuren syndrome region, are strongly associated with autism. Neuron. 2011;70(5):863-885.  https://doi.org/10.1016/j.neuron.2011.05.002
  45. Sanders SJ, He X, Willsey AJ, et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron. 2015;87(6):1215-1233. https://doi.org/10.1016/j.neuron.2015.09.016
  46. Tantra M, Guo L, Kim J, et al. Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors. Genes, Brain and Behavior. 2018;17(6):e12466. https://doi.org/10.1111/gbb.12466
  47. Holland D, Frei O, Desikan R, et al. Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLOS Genetics. 2020;16(5):e1008612. https://doi.org/10.1371/journal.pgen.1008612
  48. Kanazawa T, Bousman CA, Liu C, Everall IP. Schizophrenia genetics in the genome-wide era: a review of Japanese studies. npj Schizophr. 2017;3(1):1-6.  https://doi.org/10.1038/s41537-017-0028-2
  49. Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci. 2014;17(6):782-790.  https://doi.org/10.1038/nn.3708
  50. Singh T, Poterba T, Curtis D, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604(7906):509-516.  https://doi.org/10.1038/s41586-022-04556-w
  51. Zhou X, Long JM, Geyer MA, et al. Reduced expression of the Sp4 gene in mice causes deficits in sensorimotor gating and memory associated with hippocampal vacuolization. Mol Psychiatry. 2005;10(4):393-406.  https://doi.org/10.1038/sj.mp.4001621
  52. Zhou X, Qyang Y, Kelsoe JR, Masliah E, Geyer MA. Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav. 2007;6(3):269-276.  https://doi.org/10.1111/j.1601-183X.2006.00256.x
  53. Wang X, Pinto-Duarte A, Behrens MM, Zhou X, Sejnowski TJ. Ketamine independently modulated power and phase-coupling of theta oscillations in Sp4 hypomorphic mice. PLoS One. 2018;13(3):e0193446. https://doi.org/10.1371/journal.pone.0193446
  54. Zhou X. Over-representation of potential SP4 target genes within schizophrenia-risk genes. Mol Psychiatry. 2022;27(2):849-854.  https://doi.org/10.1038/s41380-021-01376-8
  55. Chano T, Okabe H, Hulette CM. RB1CC1 insufficiency causes neuronal atrophy through mTOR signaling alteration and involved in the pathology of Alzheimer’s diseases. Brain Res. 2007;1168:97-105.  https://doi.org/10.1016/j.brainres.2007.06.075
  56. Liang CC, Wang C, Peng X, Gan B, Guan JL. Neural-specific Deletion of FIP200 Leads to Cerebellar Degeneration Caused by Increased Neuronal Death and Axon Degeneration. J Biol Chem. 2010;285(5):3499-3509. https://doi.org/10.1074/jbc.M109.072389
  57. Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci. 2013;16(5):532-542.  https://doi.org/10.1038/nn.3365
  58. Mukai J, Cannavò E, Crabtree GW, et al. Recapitulation and reversal of schizophrenia-related phenotypes in Setd1a-deficient mice. Neuron. 2019;104(3):471-487.e12.  https://doi.org/10.1016/j.neuron.2019.09.014
  59. Nagahama K, Sakoori K, Watanabe T, et al. Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell Rep. 2020;32(11):108126. https://doi.org/10.1016/j.celrep.2020.108126
  60. Chen R, Liu Y, Djekidel MN, et al. Cell type-specific mechanism of Setd1a heterozygosity in schizophrenia pathogenesis. Science Advances. 2022;8(9):eabm1077. https://doi.org/10.1126/sciadv.abm1077
  61. Rysenkova KD, Troyanovskiy KE, Klimovich PS, et al. Identification of a Novel Small RNA Encoded in the Mouse Urokinase Receptor uPAR Gene (Plaur) and Its Molecular Target Mef2d. Frontiers in Molecular Neuroscience. 2022;15. Accessed August 7, 2022. https://www.frontiersin.org/articles/10.3389/fnmol.2022.865858
  62. Ba W, Yan Y, Reijnders MRF, et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function. Hum Mol Genet. 2016;25(5):892-902.  https://doi.org/10.1093/hmg/ddv618
  63. Katrancha SM, Wu Y, Zhu M, et al. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Hum Mol Genet. 2017;26(23):4728-4740. https://doi.org/10.1093/hmg/ddx355
  64. Barbosa S, Greville-Heygate S, Bonnet M, et al. Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct, Domain-Specific Neurodevelopmental Disorders. Am J Hum Genet. 2020;106(3):338-355.  https://doi.org/10.1016/j.ajhg.2020.01.018
  65. Archbold HC, Jackson KL, Arora A, et al. TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia. Sci Rep. 2018;8(1):4606. https://doi.org/10.1038/s41598-018-22858-w
  66. Pös O, Radvanszky J, Buglyó G, et al. DNA copy number variation: Main characteristics, evolutionary significance, and pathological aspects. Biomedical Journal. 2021;44(5):548-559.  https://doi.org/10.1016/j.bj.2021.02.003
  67. Singh AK, Olsen MF, Lavik LAS, et al. Detecting copy number variation in next generation sequencing data from diagnostic gene panels. BMC Medical Genomics. 2021;14(1):214.  https://doi.org/10.1186/s12920-021-01059-x
  68. Lin CF, Naj AC, Wang LS. Analyzing Copy Number Variation using SNP Array Data: Protocols for Calling CNV and Association Tests. Curr Protoc Hum Genet. 2013;79:Unit-1.27.  https://doi.org/10.1002/0471142905.hg0127s79
  69. Marshall CR, Howrigan DP, Merico D, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49(1):27-35.  https://doi.org/10.1038/ng.3725
  70. Michaelovsky E, Carmel M, Frisch A, et al. Risk gene-set and pathways in 22q11.2 deletion-related schizophrenia: a genealogical molecular approach. Transl Psychiatry. 2019;9(1):1-9.  https://doi.org/10.1038/s41398-018-0354-9
  71. Vo OK, McNeill A, Vogt KS. The psychosocial impact of 22q11 deletion syndrome on patients and families: A systematic review. Am J Med Genet A. 2018;176(10):2215-2225. https://doi.org/10.1002/ajmg.a.38673
  72. Schneider M, Debbané M, Bassett AS, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry. 2014;171(6):627-639.  https://doi.org/10.1176/appi.ajp.2013.13070864
  73. McDonald-McGinn DM, Sullivan KE, Marino B, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1(1):1-19.  https://doi.org/10.1038/nrdp.2015.71
  74. Mukai J, Tamura M, Fénelon K, et al. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron. 2015;86(3):680-695.  https://doi.org/10.1016/j.neuron.2015.04.003
  75. Barriga EH, Alasaadi DN, Mencarelli C, Mayor R, Pichaud F. RanBP1 plays an essential role in directed migration of neural crest cells during development. Published online May 7, 2022:2022.05.05.490747. https://doi.org/10.1101/2022.05.05.490747
  76. Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177-183.  https://doi.org/10.1038/nature16549

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.