The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Samartcev I.N.

Kirov Military Medical Academy

Zhivolupov S.A.

Kirov Military medical academy

Gorbatenkova O.V.

Kirov Military medical academy

Ponomarev V.V.

Belarusian State Medical University

Butakova J.S.

Novodvinsk Central City Hospital

Biomarkers of neuroinflammation in patients with chronic cerebral ischemia during the therapy with vinpocetine (study INFLAMARK)

Authors:

Samartcev I.N., Zhivolupov S.A., Gorbatenkova O.V., Ponomarev V.V., Butakova J.S.

More about the authors

Read: 1976 times


To cite this article:

Samartcev IN, Zhivolupov SA, Gorbatenkova OV, Ponomarev VV, Butakova JS. Biomarkers of neuroinflammation in patients with chronic cerebral ischemia during the therapy with vinpocetine (study INFLAMARK). S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(12):50‑58. (In Russ.)
https://doi.org/10.17116/jnevro202312312150

Recommended articles:
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Modern aspe­cts of chro­nic cere­bral ischemia pathogenetic therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):106-113
Inflammatory aging. Part 1. The principal biochemical mechanisms. Russian Journal of Preventive Medi­cine. 2024;(12):145-150
Inflammatory aging. Part 2. Are there diagnostic biomarkers available. Russian Journal of Preventive Medi­cine. 2025;(1):89-95
Diffuse changes in the brain in the acute phase of COVID-19 and after infe­ction. Russian Journal of Archive of Pathology. 2025;(1):5-15

References:

  1. Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018;4:575-590.  https://doi.org/10.1016/j.trci.2018.06.014
  2. Edison P, Brooks DJ. Role of neuroinflammation in the trajectory of Alzheimer’s disease and in vivo quantification using PET. J Alzheimers Dis. 2018;64:339-351.  https://doi.org/10.3233/JAD-179929
  3. Bergsbaken T, Fink SL, Cookson T. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7:99-109.  https://doi.org/10.1038/nrmicro2070
  4. Kreisl WC, Kim MJ, Coughlin J, et al. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 2020;19(11):940-950.  https://doi.org/10.1016/S1474-4422(20)30346-X
  5. Zhao YY, Yu JZ, Li QY, et al. TSPO-specific ligand vinpocetine exerts a neuroprotective effect by suppressing microglial inflammation. Neuron Glia Biol. 2011;7:187-197.  https://doi.org/10.1017/S1740925X12000129
  6. Langeh U, Singh S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr Neuropharmacol. 2021;19(2):265-277.  https://doi.org/10.2174/1570159X18666200729100427
  7. Lyra e Silva NM, Gonçalves RA, Pascoal TA, et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl Psychiatry. 2021;11:251-255.  https://doi.org/10.1038/s41398-021-01349-z
  8. Baudier J, Mochly-Rosen D, Newton A, et al. Comparison of S100b protein with calmodulin: interactions with melittin and microtubule-associated tau proteins and inhibition of phosphorylation of tau proteins by protein kinase C. Biochemistry. 1987;26(10):2886-2893.
  9. Mendiola AS, Cardona AE. The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm. 2018;125(5):781-795.  https://doi.org/10.1007/s00702-017-1732-9
  10. Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci. 2007;8:221-232. 
  11. Wardlaw JM, Smith EE, Biessels GJ, et al. nEuroimaging STIRVE. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822-838.  https://doi.org/10.1016/S1474-4422(13)70124-8
  12. Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):1683-1689. https://doi.org/10.1212/wnl.43.9.1683
  13. Doubal FN, MacLullich AM, Ferguson KJ, et al. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke. 2010;41(3):450-454.  https://doi.org/10.1161/STROKEAHA.109.564914
  14. Lau KK, Li L, Schulz U, et al. Total small vessel disease score and risk of recurrent stroke: validation in 2 large cohorts. Neurology. 2017;88(24):2260-2267. https://doi.org/10.1212/WNL.0000000000004042
  15. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc. 2005;53(4):695-699.  https://doi.org/10.1111/j.1532-5415.2005.53221.x
  16. Morozova MA, Potanin SS, Beniashvili AG, et al. Validation of the Hospital Anxiety and Depression Scale Russian-language version in the general population. Profilakticheskaya Meditsina. 2023;26(4):7-14. (In Russ.). https://doi.org/10.17116/profmed2023260417
  17. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;4:540-545. 
  18. Rogov EI. The handbook of a practical psychologist. A study guide. M.: VLADOS; 1999. (In Russ.).
  19. Jaeschke R, Singer J, Guyatt G. Measurement of health status: ascertaining the minimal clinically important difference. Control Clin Trials. 1988;10:407-415.  https://doi.org/10.1016/0197-2456(89)90005-6
  20. Rebrova OT. Statistichesky analis meditsinskikh dannykh. Primenenije paketa prikladnykh program STATISTICA. M.: MediaSfera; 2002. (In Russ.).
  21. Szatmari S, Whitehouse P. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst Rev. 2003;(1):CD003119.
  22. Skoromets AA, Aliev KT, Lalayan TV, et al. Cognitive functions and treatment of their impairment in elderly patients with the vertebrobasilar insufficiency. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2013;113(4):18-24. (In Russ.).
  23. Zhivolupov SA, Samartsev IN, Yakovlev EV, et al. The effectiveness of Vinpocetine (Cavinton Comfort) in the treatment of dizziness in patients with dyscirculatory encephalopathy and its effect on the concentration of brain neurotrophic factor (BDNF) in plasma. Klinicheskaya Farmakologiya i Terapiya. 2016;(1):48-53. (In Russ.).
  24. Samartsev IN, Zhivolupov SA, Butakova YuS, et al. Efficiency of long-term vinpocetine administration in the treatment of dizziness and associated statodynamic disorders in patients with chronic cerebrovascular insufficiency (EDELWEISS study). Neurology, Neuropsychiatry, Psychosomatics. 2019;11(1):36-47. (In Russ.).
  25. Zhang W, Huang Y, Li Y, et al. Efficacy and Safety of Vinpocetine as Part of Treatment for Acute Cerebral Infarction: A Randomized, Open-Label, Controlled, Multicenter CAVIN (Chinese Assessment for Vinpocetine in Neurology) Trial. Clin Drug Invest. 2016;36:697-704.  https://doi.org/10.1007/s40261-016-0415-x
  26. Vas A, Gulyas B, Szabo Z, et al. Clinical and non-clinical investigations using positron emission tomography, near infrared spectroscopy and transcranial Doppler methods on the neuroprotective drug vinpocetine: a summary of evidences. J Neurol Sci. 2002;203-204:259-262.  https://doi.org/10.1016/s0022-510x(02)00301-5
  27. Nagel DJ, Aizawa T, Jeon KI, et al. Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circ Res. 2006;98(7):777-784.  https://doi.org/10.1161/01.RES.0000215576.27615.fd
  28. Jeon KI, Xu X, Aizawa T, et al. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Nat Acad Sci. 2010;107(45):9795-9800.
  29. Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Zarpelon AC, et al. Vinpocetine reduces lipopolysaccharide-induced inflammatory pain and neutrophil recruitment in mice by targeting oxidative stress, cytokines and NF-kappaB. Chem Biol Interact. 2015;237(7):9-17.  https://doi.org/10.1016/j.cbi.2015.05.007
  30. Liu RT, Wang A, To E, et al. Vinpocetine inhibits amyloid-beta induced activation of NF-kappaB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells. Exp Eye Res. 2014;127(34):49-58.  https://doi.org/10.1016/j.exer.2014.07.003
  31. Zhao YY, Yu JZ, Li QY, et al. TSPO-specific ligand vinpocetine exerts a neuroprotective effect by suppressing microglial inflammation. Neuron Glia Biol. 2011;34(7):187-197.  https://doi.org/10.1017/S1740925X12000129
  32. Feng X, Wang Y, Hao Y, et al. Vinpocetine inhibited the CpG oligodeoxynucleotide-induced immune response in plasmacytoid dendritic cells. Imm Invest. 2013;46(6):263-273.  https://doi.org/10.1080/08820139.2016.1248561
  33. Lam AG, Koppal T, Akama KT, et al. Mechanism of glial activation by S100B: involvement of the transcription factor NFkappaB. Neurobiol Aging. 2001;22(5):765-772.  https://doi.org/10.1016/S0197-4580(01)00233-0
  34. Hu J, Castets F, Guevara J, Van Eldik L. S100 stimulates inducible nitric oxide synthase activity, and mRNA levels in rat cortical astrocytes. J Biol Chem. 1996;271(6):2543-2547. https://doi.org/10.1074/jbc.271.5.2543
  35. Gao Q, Fan Y, Mu LY, et al. S100B and ADMA in cerebral small vessel disease and cognitive dysfunction. J Neurol Sci. 2015;354(1-2):27-32.  https://doi.org/10.1016/j.jns.2015.04.031
  36. Usmanova DD, Madzhidova EN. Participation of neurospecific protein S100 and myelin basic protein in the pathogenesis of chronic cerebral ischemia. Siberian Medical Review. 2017;8(1):60-63. (In Russ.). https://doi.org/10.20333/2500136-2017-1-60-63
  37. Yamasaki Y, Matsuura N, Shozuhara H, et al. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke. 1995;26(7):676-681.  https://doi.org/10.1161/01.STR.26.4.676
  38. Wang H, Chen H, Jin J, et al. Inhibition of the NLRP3 inflammasome reduces brain edema and regulates the distribution of aquaporin-4 after cerebral ischaemia-reperfusion. Life Sci. 2020;251:117638. https://doi.org/10.1016/j.lfs.2020.117638
  39. Li J, Liu Z, Wang L, et al. Thousand and one kinase 1 protects MCAO503 induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39:BSR20190749. https://doi.org/10.1042/BSR20190749
  40. Friedlander RM, Gagliardini V, Hara H, et al. Expression of a Dominant Negative Mutant of Interleukin-1β Converting Enzyme in Transgenic Mice Prevents Neuronal Cell Death Induced by Trophic Factor Withdrawal and Ischemic Brain Injury. J Exp Med. 1997;185:933-940.  https://doi.org/10.1084/jem.185.5.933
  41. Ma C, Yang L, Wang L. Correlation of Serum C-Peptide, Soluble Intercellular Adhesion Molecule-1, and NLRP3 Inflammasome-Related Inflammatory Factor Interleukin-1β after Brain Magnetic Resonance Imaging Examination with Cerebral Small Vessel Disease. Contrast Media Mol Imaging. 2022;2022:4379847. https://doi.org/10.1155/2022/4379847
  42. Zhang Y, Li X, Qiao S, et al. Occludin degradation makes brain microvascular endothelial cells more vulnerable to reperfusion injury in vitro. J Neurochem. 2021;156(7):352-366.  https://doi.org/10.1111/jnc.15102
  43. Che Mohd Nassir CMN, Damodaran T, Ismail NI, et al. The NLRP3 Inflammasome in Age-Related Cerebral Small Vessel Disease Manifestations: Untying the Innate Immune Response Connection. Life (Basel). 2023;13(1):216.  https://doi.org/10.3390/life13010216
  44. Noz MP, Ter Telgte A, Wiegertjes K, et al. Pro-inflammatory Monocyte Phenotype During Acute Progression of Cerebral Small Vessel Disease. Front Cardiovasc Med. 2021;8:639361. https://doi.org/10.3389/fcvm.2021.639361
  45. Tringall G, Dello Russo C, Preziosi P, Navarra P. Interleukin-1 in the central nervous system: From physiology to pathology. Therapie. 2000;55:171-175. 
  46. Anisman H, Marali Z. Cytokines, stress and depressive illness: Brain-immune interactions. Ann Med. 2003;35(5):2-11. 
  47. Jewett KA, Krueger JM. Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam Horm. 2012;89(12):241-257.  https://doi.org/10.1016/B978-0-12-394623-2.00013-5
  48. Samartcev IN, Zhivolupov SA, Efimtsev AYu, Ponomarev VV. Analysis of the correlation between neuroimaging markers of the brain damage and the severity of postural instability in patients with chronic cerebrovascular insufficiency (NEMAN open observational study). Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2022;122(7):66-73. (In Russ.). https://doi.org/10.17116/jnevro202212207166

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.