The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Khalimova K.M.

Tashkent Medical Academy

Rashidova N.S.

Tashkent Medical Academy

Salimjonov J.J.

Tashkent Medical Academy

Neurological complications after covid-19 vaccination

Authors:

Khalimova K.M., Rashidova N.S., Salimjonov J.J.

More about the authors

Read: 5419 times


To cite this article:

Khalimova KM, Rashidova NS, Salimjonov JJ. Neurological complications after covid-19 vaccination. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(12):13‑19. (In Russ.)
https://doi.org/10.17116/jnevro202312312113

Recommended articles:
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146
Cere­bral protection in transcatheter aortic valve implantation. Piro­gov Russian Journal of Surgery. 2024;(12-2):150-158
Capsular contracture after reco­nstructive plastic surgery for breast cancer. P.A. Herzen Journal of Onco­logy. 2024;(6):78-83
Factors of adhe­rence to vaccination of the Arkhangelsk region adult popu­lation. Russian Journal of Preventive Medi­cine. 2024;(12):92-99

References:

  1. WHO Director-General’s opening remarks at the media briefing on COVID19—11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.
  2. Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARSCoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383:2427-2438. https://doi.org/10.1056/NEJMoa2028436
  3. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2-Preliminary report. N Engl J Med. 2020;383:1920-1931. https://doi.org/10.1056/NEJMoa2022483
  4. Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2. S vaccine against COVID-19. N Engl J Med. 2021;384:2187-2201. https://doi.org/10.1056/NEJMoa2101544
  5. Walsh EE, Frenck RW, Falsey AR, et al. Safety and immunogenicity of two RNA-based COVID-9 vaccine candidates. N Engl J Med. 2020;383(2450):2439-5240. https://doi.org/10.1056/NEJMoa2027906
  6. Dai L, Gao L, Tao L, et al. Efficacy and Safety of the RBD-Dimer—Based Covid-19 Vaccine ZF2001 in Adults. N Engl J Med. 2022;386:2097-2111. https://doi.org/10.1056/NEJMoa2202261
  7. Commission E. Commission Implementing Decision of 21.12.2020 Granting a Conditional Marketing Authorisation Under Regulation (EC) No 726/2004 of the European Parliament and of the Council for «Comirnaty — COVID-19 mRNA Vaccine (Nucleoside Modified)», a Medicinal Product for Human Use. Brussels: European Commission, 2020. https://ec.europa.eu/health/documents/community-register/2020/20201221150522/dec_150522_en.pdf
  8. Commission E. Commission Implementing Decision of 6.1.2021 Granting a Conditional Marketing Authorisation Under Regulation (EC) No 726/2004 of the European Parliament and of the Council for «COVID-19 Vaccine Moderna — COVID-19 mRNA Vaccine (Nucleoside Modified)», a Medicinal Product for Human Use. Brussels: European Commission, 2021. https://ec.europa.eu/health/documents/community-register/2021/20210106150575/dec_150575_en.pdf
  9. Food and Drug Administration. Moderna COVID-19 Vaccine Emergency Use Authorization. Silver Spring: US Department of Health and Human Services, Food and Drug Administration, 2020. https://www.fda.gov/media/144636/download
  10. Food and Drug Administration. Pfizer-BioNTech COVID-19 Vaccine Emergency Use Authorization. Silver Spring: US Department of Health and Human Services, Food and Drug Administration, 2020. https://www.fda.gov/media/144416/download
  11. Logunov DY, Dolzhikova IV, Shcheblyakov DV. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial In Russia. Lancet. 2021;397:671-681.  https://doi.org/10.1016/S0140-6736(21)00234-8
  12. Logunov DY, Dolzhikova IV, Zubkova OV. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID—19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396:887-897.  https://doi.org/10.1016/S0140-6736(20)31866-3
  13. Myoclinic: Different types of COVID-19 vaccines: how they work. https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/different-types-of-covid-19-vaccines/art-20506465
  14. WHO: Coronavirus disease (COVID-19): Vaccines. https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines?topicsurvey=v8kj13)&gclid=CjwKCAjwn8SLBhAyEiwAHNTJbcnirkqgcFnvxtKY_Qhc0pAoGWMoxlhxogwCI5aQLCIYCQmfj7MSPhoCrScQAvD_BwE#
  15. European Medicines Agency. Guideline on Quality, Non-Clinical and clinical Aspects of Live Recombinant Viral Vectored Vaccines (Updated June 2010). London: European Medicines Agency; (2009). https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-clinical-aspects-live-recombinant-viral-vectored-vaccines_en.pdf
  16. Gabitzsch ES, Xu Y, Yoshida LH, et al. A preliminary and comparative evaluation of a novel Ad5 [E1-, E2b-] recombinant-based vaccine used to induce cell mediated immune responses. Immunol Lett. 2009;122:44-51.  https://doi.org/10.1016/j.imlet.2008.11.003
  17. Monath TP, Seligman SJ, Robertson JS, et al. Live virus vaccines based on a yellow fever vaccine backbone: Standardized template with key considerations for a risk/benefit assessment. Vaccine. 2015;3:62-72.  https://doi.org/10.1016/j.vaccine.2014.10.004
  18. Trapnell BC. Adenoviral vectors for gene transfer. Adv Drug Del Rev. 1993;12:185-199.  https://doi.org/10.1016/0169-409x(93)90059-d
  19. Granados-Riveron JT, Aquino-Jarquin G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacotherapy. 2021;142:111953. https://doi.org/10.1016/j.biopha.2021.111953
  20. Shimabukuro TT, Nguyen M, Martin D, DeStefano F. Safety monitoring in the Vaccine Adverse Event Reporting System (VAERS). Vaccine. 2015;33:4398-4405. https://doi.org/10.1016/j.vaccine.2015.07.035
  21. European Medicines Agency. EMA Pharmacovigilance System Manual Version 1.3. Amsterdam: European Medicines Agency; (2021). https://www.ema.europa.eu/en/documents/other/european-medicines-agency-pharmacovigilance-system-manual_en.pdf
  22. Food and Drug Administration. Fact Sheet for Healthcare Providers Administering Vaccine. Pfizer-BioNTech COVID-19 Vaccine. Revision: January 2021. Silver Spring: US Department of Health and Human Services, Food and Drug Administration, 2020. https://www.michigan.gov/-/media/Project/Websites/mdhhs/Folder4/Folder35/Folder3/Folder135/Folder2/Folder235/Folder1/Folder335/Pfizer_EUA_for_Healthcare_Provider_5192010.pdf?rev=7bd57fdb60e94ebcb7c88f50f8664da8
  23. Food and Drug Administration. Fact Sheet for Healthcare Providers Administering Vaccine. Pfizer-BioNTech COVID-19 Vaccine. Revision: December 2020. Silver Spring: US Department of Health and Human Services, Food and Drug Administration, 2020. https://www.fda.gov/media/150386/download
  24. Ella R, Reddy S, Jogdand H, et al. Safety and immunogenicity clinical trial of an inactivated SARS-CoV-2 vaccine, BBV152 (a phase 2, double-blind, randomised controlled trial) and the persistence of immune responses from a phase 1 follow-up report. Lancet Infect Dis. 2021;21:637-646.  https://doi.org/10.1016/S1473-3099(20)30942-7
  25. Geneva: World Health Organization; 2013. Causality assessment of an adverse event following immunization (AEFI). User manual for the revised WHO classification. https://www.who.int/vaccine_safety/publications/aevi_manual.pdf.
  26. Montano D. Frequency and Associations of Adverse Reactions of COVID-19 Vaccines Reported to Pharmacovigilance Systems in the European Union and the United States. Front Public Health. 2022;9:756633. https://doi.org/10.3389/fpubh.2021.756633
  27. Aliasin MM, Yazdanpanah N, Rezaei N. Neurological and neuropsychological adverse effects of SARS-CoV-2 vaccines — where do we stand? Rev Neurosci. 2022;33(7):721-743.  https://doi.org/10.1515/revneuro-2022-0006
  28. Assiri SA, Althaqafi RMM, Alswat K, et al. Post COVID-19 Vaccination-Associated Neurological Complications. Neuropsychiatr Dis Treat. 2022;18:137-154.  https://doi.org/10.2147/NDT.S343438
  29. Hwang SH, Lee H, Yamamoto M, et al. B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus — prone mice. The J Immunol. 2012;189:5786-5796. https://doi.org/10.4049/jimmunol.1202195
  30. Kim S-E, Chen Z, Essani AB, et al. Identification of a novel TLR7 endogenous ligand in RA synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheumatol. 2015;68:1099-1110. https://doi.org/10.1002/art.39544
  31. Thibault DL, Graham KL, Lee LY, et al. Type I interferon receptor controls B-cell expression of nucleic acid-sensing Toll-like receptors and autoantibody production in a murine model of lupus. Arthritis Res Therapy. 2009;11:R112. https://doi.org/10.1186/ar2771
  32. Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18-22.  https://doi.org/10.1016/j.bbi.2020.03.031
  33. Forrester JV, Xu H, Lambe T, Cornall R. Immune privilege or privileged immunity? Mucosal Immunol. 2008;1:372-381.  https://doi.org/10.1038/mi.2008.27
  34. Rhea EM, Logsdon AF, Hansen KM, et al. The S1 protein of SARS-CoV-2 crosses the blood — brain barrier in mice. Nat Neurosci. 2020;24:368-378.  https://doi.org/10.1038/s41593-020-00771-8
  35. Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Respir J. 2019;54:1901647. https://doi.org/10.1183/13993003.01647-2019
  36. Reid T, Warren R, Kirn D. Intravascular adenoviral agents in cancer patients: Lessons from clinical trials. Cancer Gene Therapy. 2002;9:979-986.  https://doi.org/10.1038/sj.cgt.7700539
  37. Ritter T, Lehmann M, Volk H. Improvements in gene therapy. BioDrugs. 2002;16:3-10.  https://doi.org/10.2165/00063030-200216010-00001
  38. Veber VR, Fishman BB, Kulikov VE, et al. Varianty assotsiatsiy kliniko-biokhimicheskikh pokazateley i tsitokinov krovi pri tsirrozakh pecheni. VICH-infektsiya i Immunosupressii. 2018;10(1):47-53. (In Russ.). https://doi.org/10.22328/2077-9828-2018-10-1-47-53
  39. Zaiss AK, Machado HB, Herschman HR. The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem. 2009;108:778-790.  https://doi.org/10.1002/jcb.22328
  40. Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015;9:28.  https://doi.org/10.3389/fncel.2015.00028
  41. Karussis D, Petrou P. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes. Autoimmun Rev. 2014;13:215-224.  https://doi.org/10.1016/j.autrev.2013.10.003
  42. Scheller NM, Svanström H, Pasternak B, et al. Quadrivalent HPV vaccination and risk of multiple sclerosis and other demyelinating diseases of the central nervous system. JAMA. 2015;313:54-61.  https://doi.org/10.1001/jama.2014.16946
  43. Pruna D, Balestri P, Zamponi N, et al. Epilepsy and vaccinations: Italian guidelines. Epilepsia. 2013;54(7):13-22.  https://doi.org/10.1111/epi.12306
  44. Waheed S, Bayas A, Hindi F, et al. Neurological complications of COVID-19: guillain-barre syndrome following pfizer COVID-19 vaccine. Cureus. 2021;13:e13426. https://doi.org/10.7759/cureus.13426
  45. Kakovan M, Ghorbani Shirkouhi S, Zarei M, Andalib S. Stroke Associated with COVID-19 Vaccines. J Stroke Cerebrovasc Dis. 2022;31(6):106440. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106440
  46. Polack FP, Thomas SJ, Kitchin N, et al. for the C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383:2603-2615. https://doi.org/10.1056/NEJMoa2034577
  47. EMA recommends first COVID-19 vaccine for authorisation in the EU. Dec 21, 2020. https://www.ema.europa.eu/en/news/ema-recommends-first-covid-19-vaccine-authorisation-eu#:~:text=EMA%20recommends%20first%20COVID%2D19%20vaccine%20for%20authorisation%20in%20the%20EU,-Share&text=Comirnaty%20is%20now%20authorised%20across,Commission%20on%2021%20December%202020
  48. FDA Takes Key Action in Fight Against COVID—19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine. Dec 11, 2020. https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19
  49. Baden LR, El Sahly HM, Essink B, et al. COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416.  https://doi.org/10.1056/NEJMoa2035389
  50. EMA COVID-19 vaccine MODERNA safety update. May 11, 2021. https://www.ema.europa.eu/en/documents/covid-19-vaccine-safety-update/covid-19-vaccine-safety-update-spikevax-previously-covid-19-vaccine-moderna-11-may-2021_en.pdf
  51. Roytberg GYe, Dorosh ZhV, Kondratova NV, Chudinskaya GN. Klinicheskoye nablyudeniye patsiyenta s sindromom Giyyena—Barre posle vaktsinatsii ot COVID-19. Terapiya. 2021;2:131-137. (In Russ.). https://doi.org/10.18565/therapy.2021.2.131-137
  52. Dutta S, Kaur R, Charan J, et al. Analysis of Neurological Adverse Events Reported in VigiBaseFrom COVID-19 Vaccines. Cureus. 2022;14(1):e21376. https://doi.org/10.7759/cureus.21376
  53. Shafiq A, Salameh MA, Laswi I, et al. Neurological Immune-Related Adverse Events After COVID-19 Vaccination: A Systematic Review. J Clin Pharmacol. 2022;62(3):291-303.  https://doi.org/10.1002/jcph.2017
  54. Althaus K, Möller P, Uzun G, et al. Antibody-mediated procoagulant platelets in SARS-CoV-2- vaccination associated immune thrombotic thrombocytopenia. Haematologica. 2021;106:2170-2179. https://doi.org/10.3324/haematol.2021.279000
  55. Choi S, Lee S, Seo JW, et al. Myocarditis-induced sudden death after BNT162b2 mRNA COVID-19 vaccination in Korea: case report focusing on histopathological findings. J Korean Med Sci. 2021;36:e286. https://doi.org/10.3346/jkms.2021.36.e286
  56. Permezel F, Borojevic B, Lau S, de Boer HH. Acute disseminated encephalomyelitis (ADEM) following recent Oxford/AstraZeneca COVID-19 vaccination. Forensic Sci Med Pathol. 2022;18(1):74-79.  https://doi.org/10.1007/s12024-021-00440-7
  57. Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Develop. 2007;128:92-105.  https://doi.org/10.1016/j.mad.2006.11.016
  58. Mari D, Coppola R, Provenzano R. Hemostasis factors and aging. Exp Gerontol. 2008;43:66-73.  https://doi.org/10.1016/j.exger.2007.06.014
  59. Ungvari Z, Tarantini S, Donato AJ, et al. Mechanisms of vascular aging. Circ Res. 2018;123:849-867.  https://doi.org/10.1161/circresaha.118.311378
  60. Menni C, Klaser K, May A, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis. 2021;21(7):939-949.  https://doi.org/10.1016/S1473-3099(21)00224-3
  61. Garg RK, Paliwal VK. Spectrum of neurological complications following COVID-19 vaccination. Neurol Sci. 2022;43(1):3-40.  https://doi.org/10.1007/s10072-021-05662-9
  62. Hippisley-Cox J, Patone M, Mei XW, et al. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study. BMJ. 2021;374:n1931. https://doi.org/10.1136/bmj.n1931
  63. Meylan S, Livio F, Foerster M, et al. Stage III hypertension in patients after mRNA-based SARS-CoV-2 vaccination. Hypertension. 2021;77 (Dallas, Tex: 1979)e56-e57.  https://doi.org/10.1161/HYPERTENSIONAHA.121.17316
  64. Bjørnstad-Tuveng TH, Rudjord A, Anker P. Fatal cerebral haemorrhage after COVID-19 vaccine. Tidsskr Nor Laegeforen. 2021;141(6):56-61.  https://doi.org/10.4045/tidsskr.21.0312
  65. Greinacher A, Thiele T, Warkentin TE, et al. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384:2092-2101. https://doi.org/10.1056/NEJMoa2104840
  66. Finsterer J, Korn M. Aphasia seven days after second dose of an mRNA-based SARS-CoV-2 vaccine. Brain Hemorrhages. 2021;2:165-167.  https://doi.org/10.1016/j.hest.2021.06.001
  67. Hwang J, Lee SB, Lee SW, et al. Comparison of vaccine-induced thrombotic events between ChAdOx1 nCoV-19 and Ad26.COV.2.S vaccines. J Autoimmun. 2021;122:102681. https://doi.org/10.1016/j.jaut.2021.102681
  68. Behzadnia H, Omrani SN, Nozari-Golsefid H, et al. Ischemic stroke and intracerebral hemorrhage in patients with COVID-19. Rom J Neurol. 2020;19:166-170.  https://doi.org/10.37897/RJN.2020.3.5
  69. Divani AA, Andalib S, Di Napoli M, et al. Coronavirus disease 2019 and stroke: clinical manifestations and pathophysiological insights. Association. 2020;29(8):104941. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941
  70. Singh Malhotra H, Gupta P, Prabhu V, et al. COVID-19 vaccination-associated myelitis. QJM: Monthly Journal of the Association of Physicians. 2021;114(8):591-593.  https://doi.org/10.1093/qjmed/hcab069
  71. Marcucci R, Marietta M. Vaccine-induced thrombotic thrombocytopenia: the elusive link between thrombosis and adenovirus-based SARS-CoV-2 vaccines. Internal Emerg Med. 2021;16(5):1113-1119. https://doi.org/10.1007/s11739-021-02793-x
  72. Franchini M, Liumbruno GM, Pezzo M. COVID-19 Vaccine-associated Immune Thrombosis and Thrombocytopenia (VITT): diagnostic and therapeutic recommendations for a new syndrome. Eur J Haematol. 2021;107:173-180.  https://doi.org/10.1111/ejh.13665
  73. Perry RJ, Tamborska A, Singh B, et al.; CVT After Immunisation Against COVID-19 (CAIAC) collaborators. Cerebral venous thrombosis after vaccination against COVID-19 in the UK: a multicentre cohort study. Lancet. 2021;398(10306):1147-1156. https://doi.org/10.1016/S0140-6736(21)01608-1
  74. Karikó K, Muramatsu H, Keller JM, Weissman D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Therapy. 2012;20:948-953.  https://doi.org/10.1038/mt.2012.7
  75. Everett RS, Hodges BL, Ding EY, et al. Liver toxicities typically induced by first-generation adenoviral vectors can be reduced by use of E1, E2b-deleted adenoviral vectors. Human Gene Therapy. 2003;14:1715-1726. https://doi.org/10.1089/104303403322611737
  76. Vaccine Adverse Event Reporting System. VAERS Data Use Guide. Revision: November 2020. Rockville: Vaccine Adverse Event Reporting System, 2020. https://vaers.hhs.gov/docs/VAERSDataUseGuide_November2020.pdf
  77. European Medicines Agency. Guide on the Interpretation of Spontaneous Case Reports of Suspected Adverse Reactions to Medicines. London: European Medicines Agency; (2017). https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/eudravigilance-european-database-suspected-adverse-reactions-related-medicines-user-manual-online_en.pdf
  78. Ahamad MM, Aktar S, Uddin MJ, et al. Adverse Effects of COVID-19 Vaccination: Machine Learning and Statistical Approach to Identify and Classify Incidences of Morbidity and Postvaccination Reactogenicity. Healthcare (Basel). 2022;11(1):31.  https://doi.org/10.3390/healthcare11010031
  79. Nicolai L, Leunig A, Pekayvaz K, et al. Thrombocytopenia and splenic platelet directed immune responses after intravenous ChAdOx1 nCov-19 administration. bioRxiv. 2021;2021.2006.2029.450356. https://doi.org/10.1182/blood.2021014712
  80. Divani AA, Andalib S, Biller J, et al. Central nervous system manifestations associated with COVID-19. Curr Neurol Neurosci Rep. 2020;20:60.  https://doi.org/10.1007/s11910-020-01079-7
  81. Ciccone A. SARS-CoV-2 vaccine-induced cerebral venous thrombosis. Eur J Intern Med. 2021;89:19-21.  https://doi.org/10.1016/j.ejim.2021.05.026
  82. Taquet M, Husain M, Geddes JR, et al. Cerebral venous thrombosis and portal vein thrombosis: a retrospective cohort study of 537,913 COVID-19 cases. EClinicalMedicine. 2021;39:101061. https://doi.org/10.1016/j.eclinm.2021.101061
  83. Hazell L, Shakir SAW. Under-reporting of adverse drug reactions. Drug Safety. 2006;29:385-396.  https://doi.org/10.2165/00002018-200629050-00003
  84. Campello E, Simion C, Bulato C, et al. Absence of hypercoagulability after nCoV-19 vaccination: an observational pilot study. Thromb Res. 2021;205:24-28.  https://doi.org/10.1016/j.thromres.2021.06.016
  85. Greinacher A, Selleng K, Mayerle J, et al. Anti-SARS-CoV-2 spike protein and anti-platelet factor 4 antibody responses induced by COVID-19 disease and ChAdOx1 nCov-19 vaccination. Blood. 2021;138(14):1269-1277. https://doi.org/10.1182/blood.2021012938
  86. Liu T, Dai J, Yang Z, et al. Inactivated SARS-CoV-2 vaccine does not influence the profile of prothrombotic antibody nor increase the risk of thrombosis in a prospective Chinese cohort. Sci Bull. 2021;66:2312-2319. https://doi.org/10.1016/j.scib.2021.07.033

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.