The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Komysheva N.P.

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Shishkina G.T.

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Prospects for the use of drugs with anti-inflammatory properties for the treatment of depression

Authors:

Komysheva N.P., Shishkina G.T.

More about the authors

Read: 3662 times


To cite this article:

Komysheva NP, Shishkina GT. Prospects for the use of drugs with anti-inflammatory properties for the treatment of depression. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(6):124‑131. (In Russ.)
https://doi.org/10.17116/jnevro2021121061124

Recommended articles:
The gut microbiota in bipo­lar diso­rder. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):28-33
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Effi­cacy of alpha-glutamyl-tryptophan in the treatment of chro­nic atro­phic gastritis: case series. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):121-128

References:

  1. Arteaga-Henríquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, Birkenhager TK, Musil R, Müller N, Drexhage HA. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: A systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME consortium. Front Psychiatry. 2019;10:458.  https://doi.org/10.3389/fpsyt.2019.00458
  2. Maslej MM, Furukawa TA, Cipriani A, Andrews PW, Mulsant BH. Individual Differences in Response to Antidepressants: A Meta-analysis of Placebo-Controlled Randomized Clinical Trials. JAMA Psychiatry. 2020;4815. https://doi.org/10.1001/jamapsychiatry.2019.4815
  3. Jha MK, Trivedi MH. Personalized antidepressant selection and pathway to novel treatments: Clinical utility of targeting inflammation. International Journal of Molecular Sciences. 2018;19(1):233.  https://doi.org/10.3390/ijms19010233
  4. O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. Journal of Psychiatric Research. 2007;41(3-4):326-331.  https://doi.org/10.1016/j.jpsychires.2006.05.013
  5. Yoshimura R, Hori H, Ikenouchi-Sugita A, Umene-Nakano W, Ueda N, Nakamura J. Higher plasma interleukin-6 (IL-6) level is associated with SSRI- or SNRI-refractory depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2009;33(4):722-726.  https://doi.org/10.1016/j.pnpbp.2009.03.020
  6. Chamberlain SR, Cavanagh J, de Boer P, Mondelli V, Jones DNC, Drevets WC, Cowen PJ, Harrison NA, Pointon L, Pariante CM, Bullmore ET. Treatment-resistant depression and peripheral C-reactive protein. The British Journal of Psychiatry. 2019;214(1):11-19.  https://doi.org/10.1192/bjp.2018.66
  7. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmächer T. Cytokine-associated emotional and cognitive disturbances in humans. Archives of General Psychiatry. 2001;58(5):445.  https://doi.org/10.1001/archpsyc.58.5.445
  8. Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2005;29(2):201-217.  https://doi.org/10.1016/j.pnpbp.2004.11.003
  9. Rukavishnikov GV, Kibitov AO, Mazo GE, Neznanov NG. Genetic comorbidity of depression and somatic disorders. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2019;119(1):89-96. (In Russ.). https://doi.org/10.17116/jnevro201911901189
  10. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL. A meta-analysis of cytokines in major depression. Biological Psychiatry. 2010;67(5):446-457.  https://doi.org/10.1016/j.biopsych.2009.09.033
  11. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity. 2015;49:206-215.  https://doi.org/10.1016/j.bbi.2015.06.001
  12. Kohler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, Stubbs B, Solmi M, Veronese N, Herrmann N, Raison CL, Miller BJ, Lanctot KL, Carvalho AF. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatrica Scandinavica. 2017;135(5):373-387.  https://doi.org/10.1111/acps.12698
  13. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metabolic Brain Disease. 2009;24(1):27-53.  https://doi.org/10.1007/s11011-008-9118-1
  14. Lotrich FE. Inflammatory cytokine-associated depression. Brain Research. 2015;1617:113-125.  https://doi.org/10.1016/j.brainres.2014.06.032
  15. Roman M, Irwin MR. Novel neuroimmunologic therapeutics in depression: A clinical perspective on what we know so far. Brain, Behavior, and Immunity. 2020;83:7-21.  https://doi.org/10.1016/j.bbi.2019.09.016
  16. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70(1):31-41.  https://doi.org/10.1001/2013.jamapsychiatry.4
  17. Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychological Medicine. 2019;49(12):1958-1970. https://doi.org/10.1017/s0033291719001454
  18. Miller AH. Beyond depression: the expanding role of inflammation in psychiatric disorders. World Psychiatry. 2020;19(1):108.  https://doi.org/10.1002/wps.20723
  19. Woelfer M, Kasties V, Kahlfuss S, Walter M. The Role of Depressive Subtypes within the Neuroinflammation Hypothesis of Major Depressive Disorder. Neuroscience. 2019;403:93-110.  https://doi.org/10.1016/j.neuroscience.2018.03.034
  20. Lasselin J. Is inflammation-associated depression atypical depression? Brain, Behavior, and Immunity. 2020. https://doi.org/10.1016/j.bbi.2020.01.008
  21. Kutlubaev MA, Akhmadeeva LR. Neuroimmune mechanisms in the development of post-stroke depression. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2013;113(2):76-79. (In Russ.). https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2013/2/031997-72982013215
  22. Sonsin-Diaz N, Gottesman RF, Fracica E, Walston J, Windham BG, Knopman DS, Walker KA. Chronic Systemic Inflammation Is Associated With Symptoms of Late-Life Depression: The ARIC Study. The American Journal of Geriatric Psychiatry. 2020;28(1):87-98.  https://doi.org/10.1016/j.jagp.2019.05.011
  23. Ambrósio G, Kaufmann FN, Manosso L, Platt N, Ghisleni G, Rodrigues ALS, Rieger DK, Kaster MP. Depression and peripheral inflammatory profile of patients with obesity. Psychoneuroendocrinology. 2018;91:132-141.  https://doi.org/10.1016/j.psyneuen.2018.03.005
  24. Stepanichev M, Dygalo NN, Grigoryan G, Shishkina GT, Gulyaeva N. Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BioMed Research International. 2014;2014:1-20.  https://doi.org/10.1155/2014/932757
  25. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience. 2008;9(1):46-56.  https://doi.org/10.1038/nrn2297
  26. O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Molecular Psychiatry. 2009;14(5):511-522.  https://doi.org/10.1038/sj.mp.4002148
  27. Custodio CS, Mello BS, Cordeiro RC, de Araujo FY, Chaves JH, Vasconcelos SM, Nobre Júnior HV, de Sousa FC, Vale ML, Carvalho AF, Macedo DS. Time course of the effects of lipopolysaccharide on prepulse inhibition and brain nitrite content in mice. European Journal of Pharmacology. 2013;713(1-3):31-38.  https://doi.org/10.1016/j.ejphar.2013.04.040
  28. Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nature Reviews Neuroscience. 2016;17(8):497.  https://doi.org/10.1038/nrn.2016.69
  29. Meyer JH. Neuroprogression and Immune Activation in Major Depressive Disorder. Modern Trends in Pharmacopsychiatry. 2017;31:27-36.  https://doi.org/10.1159/000470804
  30. Rhie SJ, Jung EY, Shim I. The role of neuroinflammation on pathogenesis of affective disorders. Journal of Exercise Rehabilitation. 2020;16(1):2.  https://doi.org/10.12965/jer.2040016.008
  31. McCusker RH, Kelley KW. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. Journal of Experimental Biology. 2013;216(1):84-98.  https://doi.org/10.1242/jeb.073411
  32. Vargas-Caraveo A, Sayd A, Robledo-Montaña J, Caso JR, Madrigal JLM, García-Bueno B, Leza JC. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs. Journal of Neuroinflammation. 2020;17(1):1-17.  https://doi.org/10.1186/s12974-019-1690-2
  33. Zhao X, Cao F, Liu Q, Li X, Xu G, Liu G, Zhang Y, Yang X, Yi S, Xu F, Fan K, Ma J. Behavioral, inflammatory and neurochemical disturbances in LPS and UCMS-induced mouse models of depression. Behavioural Brain Research. 2019;364:494-502.  https://doi.org/10.1016/j.bbr.2017.05.064
  34. Dang R, Zhou X, Tang M, Xu P, Gong X, Liu Y, Jiao H, Jiang P. Fish oil supplementation attenuates neuroinflammation and alleviates depressive-like behavior in rats submitted to repeated lipopolysaccharide. European Journal of Nutrition. 2018;57(3):893-906.  https://doi.org/10.1007/s00394-016-1373-z
  35. Shishkina GT, Bannova AV, Komysheva NP, Dygalo NN. Doxycycline attenuates anxiety and microglia activation induced by repeated lipopolysaccharide. European Neuropsychopharmacology. 2019;29:179-180.  https://doi.org/10.1016/j.euroneuro.2019.09.276
  36. Wang Y, Ni J, Zhai L, Gao C, Xie L, Zhao L, Yin X. Inhibition of activated astrocyte ameliorates lipopolysaccharide- induced depressive-like behaviors. Journal of Affective Disorders. 2019;242:52-59.  https://doi.org/10.1016/j.jad.2018.08.015
  37. Mazo GE, Dubinina EE, Krizhanovsky AS. Inflammation and depression: the role of oxidative stress, hormonal and cellular factors. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2014;114(1):80-84. (In Russ.). https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2014/11/031997-72982014113
  38. Adzic M, Brkic Z, Mitic M, Francija E, Jovicic MJ, Radulovic J, Maric NP. Therapeutic Strategies for Treatment of Inflammation-related Depression. Current neuropharmacology. 2018;16(2);176-209.  https://doi.org/10.2174/1570159x15666170828163048
  39. Pace TW, Hu F, Miller AH. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain, Behavior, and Immunity. 2007;21(1):9-19.  https://doi.org/10.1016/j.bbi.2006.08.009
  40. Kim HK, Nunes PV, Oliveira KC, Young LT, Lafer B. Neuropathological relationship between major depression and dementia: A hypothetical model and review. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2016;67:51-57.  https://doi.org/10.1016/j.pnpbp.2016.01.008
  41. Chesnokova V, Pechnick RN, Wawrowsky K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain, Behavior, and Immunity. 2016;58:1-8.  https://doi.org/10.1016/j.bbi.2016.01.017
  42. Song Q, Feng YB, Wang L, Shen J, Li Y, Fan C, Wang P, Yu SY. COX-2 inhibition rescues depression-like behaviors via suppressing glial activation, oxidative stress and neuronal apoptosis in rats. Neuropharmacology. 2019;160:107779. https://doi.org/10.1016/j.neuropharm.2019.107779
  43. Cowen PJ, Browning M. What has serotonin to do with depression? World Psychiatry. 2015;14(2):158.  https://doi.org/10.1002/wps.20229
  44. Shilov YE, Bezrukov MV. Kynurenines in pathogenesis of endogenous psychiatric disorders. Vestnik Rossiyskoy Akademii Meditsinskikh Nauk. 2013;68(1):35-41. (In Russ.). https://doi.org/10.15690/vramn.v68i1.535
  45. Tavares RG, Tasca CI, Santos CE, Alves LB, Porciúncula LO, Emanuelli T, Souza DO. Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochemistry International. 2002;40(7):621-627.  https://doi.org/10.1016/s0197-0186(01)00133-4
  46. Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M. Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behavioural Brain Research. 2019;359:550-555.  https://doi.org/10.1016/j.bbr.2018.10.011
  47. Haroon E, Welle JR, Woolwine BJ, Goldsmith DR, Baer W, Patel T, Felger JC, Miller AH. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression. Neuropsychopharmacology. 2020;45(6):998-1007. https://doi.org/10.1038/s41386-020-0607-1
  48. Shishkina GT, Kalinina TS, Dygalo NN. Up-regulation of tryptophan hydroxylase-2 mRNA in the rat brain by chronic fluoxetine treatment correlates with its antidepressant effect. Neuroscience. 2007;150(2):404-412.  https://doi.org/10.1016/j.neuroscience.2007.09.017
  49. Shishkina GT, Kalinina TS, Dygalo NN. Effects of swim stress and fluoxetine on 5-HT1A receptor gene expression and monoamine metabolism in the rat brain regions. Cellular and Molecular Neurobiology. 2012;32(5):787-794.  https://doi.org/10.1007/s10571-012-9828-0
  50. Gałecki P, Mossakowska-Wójcik J, Talarowska M.The anti-inflammatory mechanism of antidepressants — SSRIs, SNRIs. Prog Neuropsychopharmacol Biol Psychiatry. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2018;80:291-294.  https://doi.org/10.1016/j.pnpbp.2017.03.016
  51. Kohler-Forsberg O, Buttenschon HN, Tansey KE, Maier W, Hauser J, Dernovsek MZ, et al. Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain, Behavior, and Immunity. 2017;62:344-350.  https://doi.org/10.1016/j.bbi.2017.02.020
  52. Felger JC, Haroon E, Patel TA, Goldsmith DR, Wommack EC, Woolwine BJ, Le NA, Feinberg R, Tansey MG, Miller AH. What does plasma CRP tell us about peripheral and central inflammation in depression? Molecular Psychiatry. 2018;1-11.  https://doi.org/10.1038/s41380-018-0096-3
  53. Uher R, Tansey KE, Dew T, Maier W, Mors O, Hauser J, Dernovsek MZ, Henigsberg N, Souery D, Farmer A, McGuffin P. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. American Journal of Psychiatry. 2014;171(12):1278-1286. https://doi.org/10.1176/appi.ajp.2014.14010094
  54. Katasonov AB. Curcumin as an ajuvant treatment of depression: mechanisms of action and application prospects. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2020;120(2):125-131. (In Russ.). https://doi.org/10.17116/jnevro2020120021125
  55. Guu TW, Mischoulon D, Sarris J, Hibbeln J, McNamara RK, Hamazaki K, Freeman MP, Maes M, Matsuoka YJ, Belmaker RH, Marx W, Pariante C, Berk M, Jacka F, Su KP. A multi-national, multi-disciplinary Delphi consensus study on using omega-3 polyunsaturated fatty acids (n-3 PUFAs) for the treatment of major depressive disorder. Journal of Affective Disorders. 2020;265:233-238.  https://doi.org/10.1016/j.jad.2020.01.050
  56. Cao ZY, Liu YZ, Li JM, Ruan YM, Yan WJ, Zhong SY, Zhang T, Liu LL, Wu R, Wang B, Wang W, Bi XY, Wang YX, Su WJ, Jiang CL. Glycyrrhizic acid as an adjunctive treatment for depression through anti-inflammation: A randomized placebo-controlled clinical trial. Journal of Affective Disorders. 2020;265:247-254.  https://doi.org/10.1016/j.jad.2020.01.048
  57. Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Hashimoto K. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis. Translational Psychiatry. 2017;7(5):e1138-e1138. https://doi.org/10.1038/tp.2017.112
  58. Zhou AJ, Lee Y, Salvadore G, Hsu B, Fonseka TM, Kennedy SH, McIntyre RS. Sirukumab: A Potential Treatment for Mood Disorders? Advances in Therapy. 2017;34(1):78-90.  https://doi.org/10.1007/s12325-016-0455-x
  59. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Molecular Psychiatry. 2018;23(2):335-343.  https://doi.org/10.1038/mp.2016.167
  60. Brymer KJ, Romay-Tallon R, Allen J, Caruncho HJ, Kalynchuk LE. Exploring the Potential Antidepressant Mechanisms of TNFα Antagonists. Frontiers in Neuroscience. 2019;13:98.  https://doi.org/10.3389/fnins.2019.00098
  61. Karson A, Demirtaş T, Bayramgürler D, Balci F, Utkan T. Chronic administration of infliximab (TNF-α inhibitor) decreases depression and anxiety-like behaviour in rat model of chronic mild stress. Basic & Clinical Pharmacology & Toxicology. 2013;112(5):335-340.  https://doi.org/10.1111/bcpt.12037
  62. Eyre HA, Air T, Proctor S, Rositano S, Baune BT. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2015;57:11-16.  https://doi.org/10.1016/j.pnpbp.2014.10.003
  63. Kopschina Feltes P, Doorduin J, Klein HC, Juárez-Orozco LE, Dierckx RA, Moriguchi-Jeckel CM, de Vries EF. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. Journal of Psychopharmacology. 2017;31(9):1149-1165. https://doi.org/10.1177/0269881117711708
  64. Müller N. COX-2 Inhibitors, Aspirin, and Other Potential Anti-Inflammatory Treatments for Psychiatric Disorders. Frontiers in Psychiatry. 2019;10:375.  https://doi.org/10.3389/fpsyt.2019.00375
  65. Halaris A, Cantos A, Johnson K, Hakimi M, Sinacore J. Modulation of the inflammatory response benefits treatment-resistant bipolar depression: A randomized clinical trial. Journal of Affective Disorders. 2020;26:45-152.  https://doi.org/10.1016/j.jad.2019.10.021
  66. Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. Journal of Affective Disorders. 2012;141(2-3):308-314.  https://doi.org/10.1016/j.jad.2012.03.033
  67. Edberg D, Hoppensteadt D, Walborn A, Fareed J, Sinacore J, Halaris A. Plasma C-reactive protein levels in bipolar depression during cyclooxygenase-2 inhibitor combination treatment. Journal of Psychiatric Research. 2018;102:1-7.  https://doi.org/10.1016/j.jpsychires.2018.02.004
  68. Johansson D, Falk A, Marcus MM, Svensson TH. Celecoxib enhances the effect of reboxetine and fluoxetine on cortical noradrenaline and serotonin output in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2012;39(1):143-148.  https://doi.org/10.1016/j.pnpbp.2012.06.003
  69. Sethi R, Gómez-Coronado N, Walker AJ, Robertson OD, Agustini B, Berk M, Dodd S. Neurobiology and Therapeutic Potential of Cyclooxygenase-2 (COX-2) Inhibitors for Inflammation in Neuropsychiatric Disorders. Frontiers in Psychiatry. 2019;10:605.  https://doi.org/10.3389/fpsyt.2019.00605
  70. Hu F, Wang X, Pace TW, Wu H, Miller AH. Inhibition of COX-2 by celecoxib enhances glucocorticoid receptor function. Molecular Psychiatry. 2005;10(5):426-428.  https://doi.org/10.1038/sj.mp.4001644
  71. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. Journal of Neuroscience. 2001;21(8):2580-2588. https://doi.org/10.1523/jneurosci.21-08-02580.2001
  72. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. Journal of Neuroinflammation. 2008;5(1):15.  https://doi.org/10.1186/1742-2094-5-15
  73. Amani M, Shokouhi G, Salari AA. Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer’s disease. Psychopharmacology. 2019;236(4):1281-1292. https://doi.org/10.1007/s00213-018-5137-8
  74. Camargos QM, Silva BC, Silva DG, Toscano ECB, Oliveira BDS, Bellozi PMQ, Jardim BLO, Vieira ÉLM, de Oliveira ACP, Sousa LP, Teixeira AL, de Miranda AS, Rachid MA. Minocycline treatment prevents depression and anxiety-like behaviors and promotes neuroprotection after experimental ischemic stroke. Brain Research Bulletin. 2020;155:1-10.  https://doi.org/10.1016/j.brainresbull.2019.11.009
  75. Reis DJ, Casteen EJ, Ilardi SS. The antidepressant impact of minocycline in rodents: A systematic review and meta-analysis. Scientific Reports. 2019;9(1):1-11.  https://doi.org/10.1038/s41598-018-36507-9
  76. Husain MI, Chaudhry IB, Husain N, Khoso AB, Rahman RR, Hamirani MM, Hodsoll J, Qurashi I, Deakin JF, Young AH. Minocycline as an adjunct for treatment-resistant depressive symptoms: A pilot randomised placebo-controlled trial. Journal of Psychopharmacology. 2017;31(9):1166-1175. https://doi.org/10.1177/0269881117724352
  77. Husain MI, Cullen C, Umer M, Carvalho AF, Kloiber S, Meyer JH, Ortiz A, Knyahnytska Y, Husain MO, Giddens J, Diniz BS, Wang W, Young AH, Mulsant BH, Daskalakis ZJ. Minocycline as adjunctive treatment for treatment-resistant depression: study protocol for a double blind, placebo-controlled, randomized trial (MINDEP2). BMC psychiatry. 2020;20:1-8.  https://doi.org/10.1186/s12888-020-02553-9
  78. Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, Woldeyohannes HO, Powell AM, Manierka MS, McIntyre RS. Novel therapeutic targets in depression: minocycline as a candidate treatment. Behavioural Brain Research. 2012;235(2):302-317.  https://doi.org/10.1016/j.bbr.2012.07.026
  79. Smith K, Leyden JJ. Safety of doxycycline and minocycline: a systematic review. Clinical Therapeutics. 2005;27(9):1329-1342. https://doi.org/10.1016/j.clinthera.2005.09.005
  80. Sultan S, Gebara E, Toni N. Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Frontiers in Neuroscience. 2013;7:131.  https://doi.org/10.3389/fnins.2013.00131
  81. Santa-Cecília FV, Socias B, Ouidja MO, Sepulveda-Diaz JE, Acuña L, Silva RL, Michel PP, Del-Bel E, Cunha TM, Raisman-Vozari R. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways. Neurotoxicity Research. 2016;29(4):447-459.  https://doi.org/10.1007/s12640-015-9592-2
  82. Shishkina GT, Lanshakov DA, Bannova AV, Kalinina TS, Agarina NP, Dygalo NN. Doxycycline Used for Control of Transgene Expression has its Own Effects on Behaviors and Bcl-xL in the Rat Hippocampus. Cellular and Molecular Neurobiology. 2018;38(1):281-288.  https://doi.org/10.1007/s10571-017-0545-6
  83. Mello BS, Monte AS, McIntyre RS, Soczynska JK, Custodio CS, Cordeiro RC, Chaves JH, Vasconcelos SM, Nobre HV Jr, Florenço de Sousa FC, Hyphantis TN, Carvalho AF, Macedo DS. Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration. Journal of Psychiatric Research. 2013;47(10):1521-1529. https://doi.org/10.1016/j.jpsychires.2013.06.008
  84. Schmidtner AK, Slattery DA, Gläsner J, Hiergeist A, Gryksa K, Malik VA, Hellmann-Regen J, Heuser I, Baghai TC, Gessner A, Rupprecht R, Di Benedetto B, Neumann ID. Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Translational Psychiatry. 2019;9(1):1-12.  https://doi.org/10.1038/s41398-019-0556-9
  85. Evrensel A, Ünsalver BÖ, Ceylan ME. Neuroinflammation, Gut-Brain Axis and Depression. Psychiatry Investigation. 2020;17(1):2.  https://doi.org/10.30773/pi.2019.08.09
  86. Lurie I, Yang YX, Haynes K, Mamtani R, Boursi B. Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study. The Journal of Clinical Psychiatry. 2015;76(11):1522-1528. https://doi.org/10.4088/jcp.15m09961
  87. Jha MK. Anti-Inflammatory Treatments for Major Depressive Disorder: What’s on the Horizon? The Journal of Clinical Psychiatry. 2019;80(6). https://doi.org/10.4088/jcp.18ac12630
  88. Nagpal K, Singh SK, Mishra DN. Formulation, optimization, in vivo pharmacokinetic, behavioral and biochemical estimations of minocycline loaded chitosan nanoparticles for enhanced brain uptake. Chemical and Pharmaceutical Bulletin. 2013;61(3):258-272.  https://doi.org/10.1248/cpb.c12-00732

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.