The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Fedin A.I.

Pirogov Russian National Research Medical University

Saverskaya E.N.

Medical Continuing Education Institute of the Moscow State Food Production University

Badalyan K.R.

Pirogov Russian National Research Medical University

Multimodal therapeutic strategies in the treatment of cerebrovascular disease

Authors:

Fedin A.I., Saverskaya E.N., Badalyan K.R.

More about the authors

Read: 2185 times


To cite this article:

Fedin AI, Saverskaya EN, Badalyan KR. Multimodal therapeutic strategies in the treatment of cerebrovascular disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(12):112‑118. (In Russ.)
https://doi.org/10.17116/jnevro2021121121112

Recommended articles:
The possibilities of Mexi­dol in the complex therapy of arte­rial hype­rtension. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(5):572-580
Features of arte­rial blood flow velo­city characteristics in endo­thelial dysfunction. Russian Journal of Preventive Medi­cine. 2024;(12):100-106

References:

  1. Krishnamurthi R, Feigin V, Forouzanfar, et al. On behalf of the Global Burden of Diseases, Injuries, Risk Factors Study 2010 (GBD 2010) and the GBD Stroke Experts Group. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990—2010: findings from the Global Burden of Disease Study 2010. The Lancet Global Health. 2013;1(supp 1):259-281.  https://www.who.int/nmh/publications/ncd-status-report-2014/en/
  2. Global status report on noncommunicable diseases. 2014. ISBN 978 92 4 156485 4. WHO. 2014.
  3. Skvortsova VI, Shetova IM, Kakorina EP, et al. Reducing mortality from acute disorders of cerebral circulation as a result of the implementation of a set of measures to improve medical care for patients with vascular diseases in the Russian Federation. Profilakticheskaya Medicina. 2018;1:4-11. (In Russ.). https://doi.org/10.17116/profmed20182114-10
  4. Healthcare of Russia. 2019. Statisticheskij sbornik. M. 2019. (In Russ.). https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf
  5. Stakhovskaya LV, Klochikhina OA, Bogatyreva MV, et al. Comparison of the incidence of stroke in certain regions of the Russian Federation (according to the territorial register of stroke, 2009—2014). Medicinskij Vestnik Severnogo Kavkaza. 2019;14(1-1):64-67. (In Russ.). https://doi.org/10.14300/mnnc.2019.14051
  6. Fedin AI. Outpatient neurology. Selected lectures for primary care physicians. M.: GEOTAR-Media; 2019. (In Russ.).
  7. Harmsen P, Lappas G, Rosergen A, et al. Long-Term Risk Factors for Stroke. Twenty-Eight Years of Follow-Up of 7457 Middle-Aged Men in Göteborg. Stroke. 2013;37:1663-1667. https://doi.org/10.1161/01.STR.0000226604.10877.fc
  8. Tanashyan MM, Lagoda OV, Orlov SV, et al. Vascular diseases of the brain and metabolic syndrome. Terapevticheskij Arhiv. 2013;85:10:34-42. (In Russ.). https://ter-arkhiv.ru/0040-3660/article/view/31331
  9. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689-701.  https://doi.org/10.1016/S1474-4422(10)70104-6
  10. Peters A, Webster H. The Fine Structure of the Nervous System. New York: Oxford University Press. 1991.
  11. Raichle ME, Mintun MA. Brain Work and Brain Imaging. Annu Rev Neurosci. 2006;29:449-476.  https://doi.org/10.1146/annurev.neuro.29.051605.112819
  12. Park L, Anrather J, Forster C, et al. A beta-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J Cereb Blood Flow Metab. 2014;24:334-342.  https://doi.org/10.1097/01.wcb.0000105800.49957.1e
  13. Quignard JF, Harley EA, Duhault J, et al. K+ channels in cultured bovine retinal pericytes: effects of beta-adrenergic stimulation. J Cardiovasc Pharmacol. 2003;42:379-388.  https://doi.org/10.1097/00005344-200309000-00009
  14. Pacher P, Beckman J, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2003;87:315-324.  https://doi.org/10.1152/physrev.00029.2006
  15. Peppiatt CM, Howarth C, Mobbs P, et al. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443:700-704. Epub 2006 Oct 1.  https://doi.org/10.1038/nature05193
  16. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96:17-42.  https://doi.org/10.1016/j.neuron.2017.07.030
  17. Hall CN, Reynell C, Gesslein B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55-60.  https://doi.org/10.1038/nature13165
  18. Flammer A, Anderson T, Celermajer D. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126(6):753-767.  https://doi.org/10.1161/CIRCULATIONAHA.112.093245
  19. Fedin AI. Glymphatic system of the brain. Functional features and clinical pathology. Neurology News. 2021;80(6):2-4. 
  20. Fedin AI, Starykh EV, Baranova OA, et al. Endothelial dysfunction, vascular inflammation and oxidative stress in patients with chronic cerebral ischemia with stenosis of the internal carotid arteries. Lechebnoe Delo. 2018;1:66-71. (In Russ.). https://doi.org/10.24411/2071-5315-2018-11985
  21. Solovieva EYu, Amelina IP. Cerebral microangiopathy in the development of chronic cerebral ischemia: approaches to treatment. Medicinskij Sovet. 2020;2:16-24. (In Russ.). https://doi.org/10.21518/2079-701X-2020-2-16-24
  22. Bogolepova AN. The role of oxidative stress in the development of vascular cognitive disorders. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2020;120(8):1-7. (In Russ.). https://doi.org/10.17116/jnevro2020120081133
  23. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173-185.  https://doi.org/10.1124/pr.57.2.4
  24. Shi Y, Zhang L, Pu H, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523. https://doi.org/10.1038/ncomms10523
  25. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nature Medicine. 2011;17(7):796.  https://doi.org/10.1038/nm.2399
  26. Rayasam A, Hsu M, Kijak J, et al Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology. 2018;154(3):363-376.  https://doi.org/10.1111/imm.12918
  27. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia provide neuroprotection after ischemia. FASEB J. 2006;20(6):714-716.  https://doi.org/10.1096/fj.05-4882fje
  28. Petrov VI. Basic principles and methodology of evidence-based medicine. Bulletin of the Volgograd State Medical University. 2011;38(2):2-8. (In Russ.).
  29. Shamalov NA, Ramazanov GR, Anisimov KV, Skvortsova VI. Reperfusion therapy in ischemic stroke. Nevrologiya, Nejropsihiatriya, Psihosomatika. 2011;3(3):4-7. (In Russ.). https://doi.org/10.14412/2074-2711-2011-158
  30. Brainin M. Cerebrolysin: a multi-target drug for recovery after stroke. Expert Rev Neurother. 2018;18(8):681-687.  https://doi.org/10.1080/14737175.2018.1500459
  31. Lövblada K. Time to Refocus the Target in Stroke Therapy Again? AJNR Am J Neuroradiol. 2020;41(3):E13.  https://doi.org/10.3174/ajnr.A6416
  32. Rogalewski A, Schneider A, Ringelstein E, et al. Toward a multimodal neuroprotective treatment of stroke. Stroke. 2006;37:1129-1136. https://doi.org/10.1161/01.STR.0000209330.73175.34
  33. Yang Q, Huang Q, Hu Z, et al. Potential Neuroprotective Treatment of Stroke: Excitotoxicity, Oxidative Stress, and Inflammation. Front. Neurosci. 2019;13:1036-1039. https://doi.org/10.3389/fnins.2019.01036
  34. Crupi R, Impellizzeri D, Cuzzocrea S. Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci. 2019;12:20-26.  https://doi.org/10.3389/fnmol.2019.00020
  35. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discovery Today. 2014;20(1):122-128.  https://doi.org/10.1016/j.drudis.2014.10.003
  36. Morimoto BH. Therapeutic peptides for CNS indications: Progress and challenges. Bioorganic Med Chem. 2018;26:2859-2862. https://doi.org/10.1016/j.bmc.2017.09.011
  37. Apostolopoulos V, Bojarska J, Chai T, et al. A Global Review on Short Peptides. Frontiers and Perspectives. Molecules. 2021;26:E430. https://doi.org/10.3390/molecules26020430
  38. Shukun L, Qianli Z, Yongxin L, et al. Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly. J Am Chem Soc. 2018;140(340):10794-10802. https://doi.org/10.1021/jacs.8b04912
  39. Yakovlev AA, Gulyaeva NV. Molecular partners of cortexin in the brain. Nejrohimiya. 2017;33:1:91-96. (In Russ.). https://doi.org/10.1134/S1819712416040164
  40. Romaniello F, Arrigoni F, Bassi T, et al. Mutations in α- and β-tubulin encoding genes: implications in brain malformations. Brain Dev. 2015;37(3):273-280. Epub 2014 Jul 5.  https://doi.org/10.1016/j.braindev.2014.06.002
  41. Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem. 2010;115:297-313.  https://doi.org/10.1111/j.1471-4159.2010.06935.x
  42. Zhang J, Zhou J. 14-3-3 Proteins in Glutamatergic Synapses. Neural Plasticity. 2018(2):1-6.  https://doi.org/10.1155/2018/8407609
  43. Shi Y, Zhang L, Pu H, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523. https://doi.org/10.1038/ncomms10523
  44. Nesterenko AN, Onufriev MV, Gulyaeva NV et al. The effect of the drug Cortexin on free radical oxidation and inflammatory processes in rats with normal and accelerated aging. Nejrohimiya. 2018;35(2):187-198. (In Russ.). https://doi.org/10.7868/S1027813318020127
  45. Kurkin D, Bakulin D, Morkovin E, et al. Neuroprotective action of Cortexin, Cerebrolysin and Actovegin in acute or chronic brain ischemia in rats. PLoS ONE. 2021;16(7):E0254493. https://doi.org/10.1371/journal.pone.0254493
  46. Dolmans L, Rutten F, Koenen N, et al. Candidate Biomarkers for the Diagnosis of Transient Ischemic Attack: A Systematic Review. Cerebrovasc Dis. 2019;47(5-6):207-216.  https://doi.org/10.1159/000502449
  47. Dambinova SA, Aliev KT, Bondarenko EV et al. Biomarkers of cerebral ischemia as a new method of proving the effectiveness of neurocytoprotectors. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2017;5:62-67. (In Russ.). https://doi.org/10.17116/jnevro20171175162-67
  48. Alifirova VM, Dadasheva MN, Doronin BM et al. Multicenter prospective double-blind placebo-controlled study «Clinical efficacy and pharmacoeconomic characteristics of neuroprotection with low doses of Cortexin in the treatment of acute ischemic stroke». Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2014;4:41-46. (In Russ.).
  49. Fedin AI, Belskaya GN, Kurushina OV et al. Dose-dependent effect of cortexin in chronic cerebral ischemia (results of a multicenter randomized controlled trial). Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2018;9:35-42. (In Russ.). https://doi.org/10.17116/jnevro201811809135

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.