The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Minochkin A.K.

Saint Petersburg City Hospital No. 40;
Saint Petersburg State University

Lobzin V.Yu.

Saint Petersburg State University;
S.M. Kirov Military Medical Academy

Emelin A.Yu.

Saint Petersburg State University;
S.M. Kirov Military Medical Academy

Kopteva Yu.P.

Saint Petersburg City Hospital No. 40;
Saint Petersburg State University

Klitsenko O.A.

Saint Petersburg City Hospital No. 40

Apalko S.V.

Saint Petersburg City Hospital No. 40

Sherbak S.G.

Saint Petersburg City Hospital No. 40;
Saint Petersburg State University

A comprehensive study of Alzheimer’s disease biomarkers in plasma and cerebrospinal fluid

Authors:

Minochkin A.K., Lobzin V.Yu., Emelin A.Yu., Kopteva Yu.P., Klitsenko O.A., Apalko S.V., Sherbak S.G.

More about the authors

Read: 1202 times


To cite this article:

Minochkin AK, Lobzin VYu, Emelin AYu, Kopteva YuP, Klitsenko OA, Apalko SV, Sherbak SG. A comprehensive study of Alzheimer’s disease biomarkers in plasma and cerebrospinal fluid. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(4‑2):43‑53. (In Russ.)
https://doi.org/10.17116/jnevro202512504243

Recommended articles:
New aspe­cts of psoriasis pathogenesis: meta­bolomic profiling in dermatology. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(5):526-531
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Inflammatory aging. Part 1. The principal biochemical mechanisms. Russian Journal of Preventive Medi­cine. 2024;(12):145-150

References:

  1. Alzheimer Europe. Dementia in Europe Yearbook 2019: estimating the prevalence of dementia in Europe. 2020. Accessed Jan 24,2021. https://www.alzheimereurope.org/content/download/195515/1457520/file/FINAL%2005707%20Alzheimer%20Europe%20yearbook%202019.pdf
  2. The epidemiology and impact of dementia: current state and future trends. Geneva: World Health Organization. 2015.
  3. Dementia. World Health Organization. Accessed: 5 September 2018. Available: https://www.who.int/mediacentre/factsheets/fs362/en/
  4. World Health Organization. Dementia: number of people affected to triple in next 30 years. 2017. Accessed: 5 September 2018. Available: https://www.who.int/mediacentre/news/releases/2017/dementia-triple-affected/en/
  5. Minochkin AK, Lobzin VYu, Sushentseva NN, et al. New potential biomarkers of Alzheimer’s disease: markers of endothelial dysfunction and neuroinflammation. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):35-42. (In Russ.). https://doi.org/10.14412/2074-2711-2022-2-35-42
  6. Yakhno NN, Koberskaya NN, Zakharov VV, et al. Influence of the age factor on pre-mild cognitive impairment. Rossijskij Nevrologiceskij Zhurnal. 2019;24(5):32-37. (In Russ.). https://doi.org/10.30629/2658-7947-2019-24-5-32-37
  7. Hampel H, Toschi N, Babiloni C, et al; Alzheimer Precision Medicine Initiative (APMI). Revolution of Alzheimer precision neurology. J Alzheimers Dis. 2018;64(s1):S47-S105. https://doi.org/10.3233/jad-179932
  8. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US); 2016. Accessed 22.09.2017. Available from: www.ncbi.nlm.nih.gov/books/NBK326791/
  9. Emelin AYu, Lobzin VYu. Complex diagnostic of cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(6-2):33-40. (In Russ.). https://doi.org/10.17116/jnevro20171176233-40
  10. Grande G, Vanacore N, Vetrano DL, et al. Free and cued selective reminding test predicts progression to Alzheimer’s disease in people with mild cognitive impairment. Neurol Sci. 2018;39(11):1867-1875. https://doi.org/10.1007/s10072-018-3507-y
  11. Auriacombe S, Helmer C, Amieva H, et al. Validity of the free and cued selective reminding test in predicting dementia: the 3C study. Neurology. 2010;74(22):1760-1767.
  12. Sarazin M, Berr C, de Rotrou J, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology. 2007;69(19):1859-1867.
  13. Anand BG, Wu Q, Karthivashan G, et al. Amnestic syndrome. Amnestic syndrome Bioact. Mater. 2021;6(12):4491-4505.
  14. Blennow K, Hampel H, Weiner M, et al. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6(3):131-144. 
  15. Лобзин В.Ю., Емелин А.Ю., Алексеева Л.А. Ликворологические биомаркеры нейродегенерации в ранней диагностике когнитивных нарушений. Вестник Российской Военно-Медицинской Академии. 2013;4(44):56-59. 
  16. Lobzin VYu, Emelin AYu, Alekseeva LA. Cerebrospinal fluid biomarkers of neurodegeneration in the early diagnosis of cognitive disorders. Bulletin of the Russian Military Medical Academy. 2013;4(44):56-59. (In Russ.).
  17. McGrowder DA, Miller F, Vaz K, et al. Cerebrospinal fluid biomarkers of Alzheimer’s disease: current evidence and future perspectives. Brain Sci. 2021;11(2):215.  https://doi.org/10.3390/brainsci11020215
  18. Blennow K, Shaw LM, Stomrud E, et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Aβ(1-42), pTau and tTau CSF immunoassays. Sci Rep. 2019;9:19024. https://doi.org/10.1038/s41598-019-54204-z
  19. Buchhave P, Lennart M, Zetterberg H, et al. Cerebrospinal fluid levels of beta-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry. 2012;69:98-106. 
  20. Hertze J, Lennart M, Zetterberg H, et al. Evaluation of CSF biomarkers as predictors of Alzheimer’s disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis. 2010;21:1119-1128.
  21. Ferreira D, Rivero-Santana A, Perestelo-Pérezet L. Improving CSF biomarkers’ performance for predicting progression from mild cognitive impairment to Alzheimer’s disease by considering different confounding factors: a meta-analysis. Front Aging Neurosci. 2014;6:287. 
  22. Palmqvist S, Insel PS, Stomrud E, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol Med. 2019;11(12):e11170. https://doi.org/10.15252/emmm.201911170
  23. Jack CR Jr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on AgingAlzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):257-262.  https://doi.org/10.1016/j.jalz.2011.03.004
  24. Hansson O, Lehmann S, Otto M, et al. Advantages and disadvantages of the use of the CSF Amyloid beta (Abeta) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimers Res Ther. 2019;11:34. 
  25. Delaby C, Estellés T, Zhu N, et al. The Aβ1-42/Aβ1-40 ratio in CSF is more strongly associated to tau markers and clinical progression than Aβ1-42 alone. Alz Res Ther. 2022;14:20.  https://doi.org/10.1186/s13195-022-00967-z
  26. Haller S, Garibotto V, Kovari E. Neuroimaging of dementia in 2013: what radiologists need to know. Eur Radiol. 2013;23(12):3393-404.  https://doi.org/10.1007/s00330-013-2957-0
  27. Yakhno NN, Koberskaya NN, Perepelov VA, et al. Magnetic resonance morphometry of the hippocampus and neuropsychological parameters in patients with Alzheimer’s disease. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(4):28-32. (In Russ.).
  28. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34-50.  https://doi.org/10.1038/cr.2009.139
  29. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on AgingAlzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280-292.  https://doi.org/10.1016/j.jalz.2011.03.003
  30. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on AgingAlzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270-279.  https://doi.org/10.1016/j.jalz.2011.03.008
  31. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263-269.  https://doi.org/10.1016/j.jalz.2011.03.005
  32. Folstein MF, Folstein SE, McHugh PR. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-198.  https://doi.org/10.1016/0022-3956(75)90026-6
  33. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55(11):1621-1626. https://doi.org/10.1212/wnl.55.11.1621
  34. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695-699.  https://doi.org/10.1111/j.1532-5415.2005.53221.x
  35. Llinas-Regla J, Vilalta-Franch J, Lopez-Pousa S, et al. The Trail Making Test. Assessment. 2017;24(2):183-196.  https://doi.org/10.1177/1073191115602552
  36. Castilhos RM, Chaves ML. Free and Cued Selective Reminding Test sensitivity. Alzheimers Dement (Amst). 2017;10:75.  https://doi.org/10.1016/j.dadm.2017.11.005
  37. Dubois B, Touchon J, Portet F, et al. Les cinq mots, épreuves simple et sensible pour le diagnostic de la maladie d’Alzheimer. Presse Med. 2002;31(36):1696-1699.
  38. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141:1356-1364.
  39. Sunderland T, Hill JL, Mellow AM, et al. Clock drawing in Alzheimer’s disease. A novel measure of dementia severity. J Am Geriatr Soc. 1989;37(8):725-729.  https://doi.org/10.1111/j.1532-5415.1989.tb02233.x
  40. Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566-572.  https://doi.org/10.1192/bjp.140.6.566
  41. Lobzin VYu. Vascular neurodegenerative cognitive disorders (pathogenesis, clinical manifestations, early and differential diagnosis). Diss. ... Doctor of Medical Sciences. St-Petersburg. 2016;333. 
  42. Onyango IG, Jauregui GV, Čarná M, et al. Neuroinflammation in Alzheimer’s Disease. Biomedicines. 2021;9:524.  https://doi.org/10.3390/biomedicines9050524
  43. Qin T, Prins S, Groeneveld GJ, et al. Utility of Animal Models to Understand Human Alzheimer’s Disease, Using the Mastermind Research Approach to Avoid Unnecessary Further Sacrifices of Animals. Int J Mol Sci. 2020;21:3158.
  44. Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 2017;7:170228.
  45. Chmielewska N, Szyndler J, Makowska K, et al. Looking for novel, brain-derived, peripheral biomarkers of neurological disorders. Neurol Neurochir Pol. 2018;52:318-325. 
  46. Kim K-Y, Ki Y-S, Chang K-A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells. 2023;12(9):1309. https://doi.org/10.3390/cells12091309
  47. Zimetti F, Adorni MP, Marsillach J, et al. Connection between the altered HDL antioxidant and anti-inflammatory properties and the risk to develop Alzheimer’s disease: a narrative review. Oxid Med Cell Long. 2021;7(2):16-21. 
  48. Slot R, Van Harten AC, Kester MI, et al. Apolipoprotein A1 in Cerebrospinal Fluid and Plasma and Progression to Alzheimer’s Disease in Non-Demented Elderly. J Alzheimers Dis. 2017;56(2):687-697. 
  49. Thakur S, Dhapola R, Sarma P, et al. Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation. 2023;46:1-17.  https://doi.org/10.1007/s10753-022-01721-1
  50. Zhu Y, Hilal S, Chai YL, et al. Serum hepatocyte growth factor is associated with small vessel disease in Alzheimer’s dementia. Front Aging Neurosci. 2018;10(7):8-12.  https://doi.org/10.3389/fnagi.2018.00008
  51. Shah A, Kishore U, Shastri A. Complement System in Alzheimer’s Disease. Int J Mol Sci. 2021;22(24):13647. https://doi.org/10.3390/ijms222413647
  52. Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J Neuroinflammation. 2022;19(1):206.  https://doi.org/10.1186/s12974-022-02565-0
  53. Shim KH, Kim D, Kang MJ, et al; Alzheimer’s Disease All Markers (ADAM) Research group. Subsequent correlated changes in complement component 3 and amyloid beta oligomers in the blood of patients with Alzheimer’s disease. Alzheimers Dement. 2024;20(4):2731-2741. https://doi.org/10.1002/alz.13734
  54. Wu P-F, Zhang X-H, Zhou P, et al. Growth Differentiation Factor 15 Is Associated With Alzheimer’s Disease Risk. Front Genet. 2021;12:700371. https://doi.org/10.3389/fgene.2021.700371
  55. de Aquino AMI, Gomes KAL, de Brito LLM, et al. Diagnostic accuracy of interleukin-6, interleukin-10 and tumor necrosis factor alpha cytokine levels in patients with mild cognitive impairment. Dement Neuropsychol. 2024;18:e20230027. https://doi.org/10.1590/1980-5764-DN-2023-0027
  56. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. Philadelphia, PA: Elsevier; 2017. 9th ed. 
  57. Artemov MV, Stanzhevsky AA. The use of magnetic resonance morphometry and positron emission tomography in the diagnosis of alzheimer’s disease. Visualization in Medicine. 2021;2(3):22-27. (In Russ.).
  58. Sogawa K, Kodera Y, Satoh M, et al. Increased Serum Levels of Pigment Epithelium-Derived Factor by Excessive Alcohol Consumption-Detection and Identification by a Three-Step Serum Proteome Analysis. Alcohol Clin Exp Res. 2010;35:211-217. 
  59. Lang V, Zille M, Infante-Duarte C, et al. Alzheimer’s disease: Elevated pigment epithelium-derived factor in the cerebrospinal fluid is mostly of systemic origin. J Neurol Sci. 2017;375:123-128. 
  60. Luís JP, Simões CJV, Brito RMM. The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders. Int J Mol Sci. 2022;23:1731. https://doi.org/10.3390/ijms23031731
  61. Pietroboni AM, Scarioni M, Carandini T, et al. CSF beta-amyloid and white matter damage: a new perspective on Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2018;89(4):352-357.  https://doi.org/10.1136/jnnp-2017-316603
  62. Strain JF, Smith RX, Beaumont H, et al. Loss of white matter integrity reflects tau accumulation in Alzheimer disease defined regions. Neurology. 2011; 56(7):23-29. 
  63. Wang J, Huang R, Tian S, et al. Elevated plasma level of D-dimer predicts the high risk of early cognitive impairment in type 2 diabetic patients as carotid artery plaques become vulnerable or get aggravated. Curr Alzheimer Res. 2019;16(5):396-404. 
  64. Boström G, Freyhult E, Virhammar J, et al. Different Inflammatory Signatures in Alzheimer’s Disease and Frontotemporal Dementia Cerebrospinal Fluid. J Alzheimers Dis. 2021;81(2):629-640.  https://doi.org/10.3233/JAD-201565
  65. Su C, Zhao K, Xia H, X Y. Peripheral inflammatory biomarkers in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Psychogeriatrics. 2019;34(8):12-19.  https://doi.org/10.1111/psyg.12403
  66. Maier LM, Lowe CE, Cooper J, et al; International Multiple Sclerosis Genetics Consortium. IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet. 2009;5:e1000322. https://doi.org/10.1371/journal.pgen.1000322
  67. Shen XN, Lu Y, Tan CTY, et al. Identification of inflammatory and vascular markers associated with mild cognitive impairment. Aging (Albany NY). 2019;11(8):2403-2419. https://doi.org/10.18632/aging.101924
  68. Cai Z, Liu N, Wang C, et al. Role of RAGE in Alzheimer’s disease. Cell Mol Neurobiol. 2016;36(4):483-495.  https://doi.org/10.1007/s10571-015-0233-3
  69. Miranda ER, Somal VS, Mey JT, et al. Circulating soluble RAGE isoforms are attenuated in obese, impaired-glucose-tolerant individuals and are associated with the development of type 2 diabetes. Am J Physiol Endocrinol Metabol. 2017;313(6):E631-E640. https://doi.org/10.1152/ajpendo.00146.2017
  70. Xu XY, Deng CQ, Wang J, et al. Plasma levels of soluble receptor for advanced glycation end products in Alzheimer’s disease. Int J Neurosci. 2017;127(5):454-458.  https://doi.org/10.1080/00207454.2016.1193861
  71. Lee WJ, Liao YC, Wang YF, et al. Plasma MCP-1 and Cognitive Decline in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: A Two-year Follow-up Study. Sci Rep. 2018;8(1):1280. https://doi.org/10.1038/s41598-018-19807-y
  72. Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol. 2014;50(2):534-544. 
  73. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7:e105-25. 

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.