The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Golimbet V.E.

Mental Health Research Center

Kostyuk G.P.

Alekseev Psychiatric Clinical Hospital No. 1

Genotype — phenotype relationships in view of recent advances in the understanding of genetic causes of schizophrenia

Authors:

Golimbet V.E., Kostyuk G.P.

More about the authors

Read: 4017 times


To cite this article:

Golimbet VE, Kostyuk GP. Genotype — phenotype relationships in view of recent advances in the understanding of genetic causes of schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(1‑2):20‑25. (In Russ.)
https://doi.org/10.17116/jnevro202212201220

Recommended articles:
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
A role of transcription factors in pathogenic processes asso­ciated with schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):49-54
Meta­bolic syndrome and anti­psychotic therapy of schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):165-170
PANSS six-factor model. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):28-34
Clinical and immu­nological rela­tionships in patients with early schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):35-42
Clinical and psychopathological features of treatment-resistant schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):43-50

References:

  1. Orgogozo V, Morizot B, Martin A. The differential view of genotype-phenotype relationships. Front Genet. 2015;6:179.  https://doi.org/10.3389/fgene.2015.00179
  2. Chawla A, Nagy C, Turecki G. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits. Int J Mol Sci. 2021;22:7612. https://doi.org/10.3390/ijms22147612
  3. Coelewij L, Curtis D. Mini-review: Update on the genetics of schizophrenia. Ann Hum Genet. 2018;82(5):239-243.  https://doi.org/10.1111/ahg.12259
  4. Golov AK, Kondratyev NV, Kostyuk GP, Golimbet VE. Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells. 2020;9(1):246.  https://doi.org/10.3390/cells9010246
  5. Das D, Feuer K, Wahbeh M, et al. Modeling Psychiatric Disorder Biology with Stem Cells. Curr Psychiatry Rep. 2020;22(5):24.  https://doi.org/10.1007/s11920-020-01148-1
  6. Larijani B, Roudsari PP, Hadavandkhani M, et al. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank. 2021;22(2):207-223.  https://doi.org/10.1007/s10561-020-09888-3
  7. Evgrafov OV, Armoskus C, Wrobel BB, et al. Gene Expression in Patient-Derived Neural Progenitors Implicates WNT5A Signaling in the Etiology of Schizophrenia. Biol Psychiatry. 2020;88(3):236-247.  https://doi.org/10.1016/j.biopsych.2020.01.005.
  8. Kryukov AI, Valikhov MP, Tsarapkin GY, Tovmasyan AS, Arzamazov SG, Kondratiev NV, Kostyuk GP, Golimbet VE. Isolation of neurospheres and neural progenitor cells from the olfactory epithelium. Vestn Otorinolaringol. 2019;84(1):31-35. (In. Russ.). https://doi.org/10.17116/otorino20198401131
  9. Trifu SC, Kohn B, Vlasie A, Patrichi BE. Genetics of schizophrenia (Review). Exp Ther Med. 2020;20(4):3462-3468. https://doi.org/10.3892/etm.2020.8973
  10. Baselmans BML, Yengo L, van Rheenen W, Wray NR. Risk in Relatives, Heritability, SNP-Based Heritability, and Genetic Correlations in Psychiatric Disorders: A Review. Biol Psychiatry. 2021;89(1):11-19.  https://doi.org/10.1016/j.biopsych.2020.05.034
  11. Schneider M, Debbané M, Bassett AS, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry. 2014;171(6):627-639.  https://doi.org/10.1176/appi.ajp.2013.13070864.
  12. Srikanth P, Han K, Callahan DG, et al. Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate. Cell Rep. 2015;12(9):1414-1429. https://doi.org/10.1016/j.celrep.2015.07.061.
  13. Steinberg S, Gudmundsdottir S, Sveinbjornsson G, et al. Truncating mutations in RBM12 are associated with psychosis. Nat Genet. 2017;49(8):1251-1254. https://doi.org/10.1038/ng.3894
  14. Thygesen JH, Presman A, Harju-Seppänen J, et al. Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study. Mol Psychiatry. 2020 Jul 27.  https://doi.org/10.1038/s41380-020-0820-7
  15. Schwab SG, Wildenauer DB. Genetics of psychiatric disorders in the GWAS era: an update on schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2013;263(suppl 2):147-154.  https://doi.org/10.1007/s00406-013-0450-z
  16. Takata A, Xu B, Ionita-Laza I, et al. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron. 2014;82(4):773-780.  https://doi.org/10.1016/j.neuron.2014.04.043
  17. Singh T, Kurki MI, Curtis D, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci. 2016;19(4):571-577.  https://doi.org/10.1038/nn.4267
  18. Rees E, Han J, Morgan J, et al. De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nat Neurosci. 2020;23(2):179-184.  https://doi.org/10.1038/s41593-019-0565-2
  19. Malherbe PJ, Roos JL Jr, Ehlers R, et al. Phenotypic features of patients with schizophrenia carrying de novo gene mutations: a pilot study. Psychiatry Res. 2015;225(1-2):108-114.  https://doi.org/10.1016/j.psychres.2014.10.024
  20. Morozova A, Zorkina Y, Pavlov K, et al. Association of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A With Clinical Features of Youth-Onset Schizophrenia. Front Psychiatry. 2019;10:830.  https://doi.org/10.3389/fpsyt.2019.00830
  21. International Schizophrenia Consortium, Purcell SM, Wray NR, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748-752.  https://doi.org/10.1038/nature08185.
  22. So HC, Sham PC. Exploring the predictive power of polygenic scores derived from genome-wide association studies: a study of 10 complex traits. Bioinformatics. 2017;33(6):886-892.  https://doi.org/10.1093/bioinformatics/btw745
  23. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421-427.  https://doi.org/10.1038/nature13595
  24. The Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S, Walters TR, et al. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv preprint 2020. Sep. 13.  https://doi.org/10.1101/2020.09.12.20192922
  25. Agerbo E, Sullivan PF, Vilhjálmsson BJ, et al. Polygenic Risk Score, Parental Socioeconomic Status, Family History of Psychiatric Disorders, and the Risk for Schizophrenia: A Danish Population-Based Study and Meta-analysis. JAMA Psychiatry. 2015;72(7):635-641.  https://doi.org/10.1001/jamapsychiatry.2015.0346
  26. Perkins DO, Olde Loohuis L, Barbee J, et al. Polygenic Risk Score Contribution to Psychosis Prediction in a Target Population of Persons at Clinical High Risk. Am J Psychiatry. 2020;177(2):155-163.  https://doi.org/10.1176/appi.ajp.2019.18060721
  27. Musliner KL, Krebs MD, Albiñana C, et al. Polygenic Risk and Progression to Bipolar or Psychotic Disorders Among Individuals Diagnosed With Unipolar Depression in Early Life. Am J Psychiatry. 2020;177(10):936-943.  https://doi.org/10.1176/appi.ajp.2020.19111195
  28. Docherty AR, Moscati AA, Fanous AH. Cross-Disorder Psychiatric Genomics. Curr Behav Neurosci Rep. 2016;3(3):256-263.  https://doi.org/10.1007/s40473-016-0084-3
  29. Brainstorm Consortium, Anttila V, Bulik-Sullivan B, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360(6395):eaap8757. https://doi.org/10.1126/science.aap8757
  30. Rees E, Creeth HDJ, Hwu HG, et al. Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nat Commun. 2021;12(1):5353. https://doi.org/10.1038/s41467-021-25532-4
  31. Chen Q, Li D, Jin W, et al. Research Progress on the Correlation Between Epigenetics and Schizophrenia. Front Neurosci. 2021;15:688727. https://doi.org/10.3389/fnins.2021.688727
  32. Cariaga-Martinez A, Alelú-Paz R. Rethinking the Epigenetic Framework to Unravel the Molecular Pathology of Schizophrenia. Int J Mol Sci. 2017;18(4):790.  https://doi.org/10.3390/ijms18040790
  33. Khavari B, Cairns MJ. Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells. 2020;9(8):1837. https://doi.org/10.3390/cells9081837
  34. Pardiñas AF, Holmans P, Pocklington AJ, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50(3):381-389.  https://doi.org/10.1038/s41588-018-0059-2
  35. Gusev A, Lee SH, Trynka G, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet. 2014;95(5):535-552.  https://doi.org/10.1016/j.ajhg.2014.10.004
  36. Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: From properties to genome-wide predictions. Nat Rev Genet. 2014;15:272-286.  https://doi.org/10.1038/nrg3682
  37. Alberini CM. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev. 2009;89(1):121-145.  https://doi.org/10.1152/physrev.00017.2008
  38. Skene NG, Bryois J, Bakken TE, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50:825-833.  https://doi.org/10.1038/s41588-018-0129-5
  39. Radua J, Ramella-Cravaro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry. 2018;17(1):49-66.  https://doi.org/10.1002/wps.20490
  40. Zwicker A, Denovan-Wright EM, Uher R. Gene-environment interplay in the etiology of psychosis. Psychological Medicine. 2018;15:1-12.  https://doi.org/10.1017/S003329171700383X
  41. Tomassi S, Tosato S. Epigenetics and gene expression profile in first-episode psychosis: The role of childhood trauma. Neurosci Biobehav Rev. 2017;83:226-237.  https://doi.org/10.1016/j.neubiorev.2017.10.018
  42. Lynall M, Soskic B, Schwartzentruber HJJ, et al. Genetic variants associated with cross-disorder and disorder-specific risk for psychiatric disorders are enriched at epigenetically active sites in peripheral lymphoid cells. medRxiv preprint posted August 8. 2021. https://doi.org/10.1101/2021.08.04.21261606

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.