The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Abramova A.A.

Research Center of Neurology, Moscow, Russia

Zakroyshchikova I.V.

Research Center of Neurology, Moscow, Russia

Krotenkova I.A.

Research Center of Neurology, Moscow, Russia

Kochergin I.A.

Research Center of Neurology, Moscow, Russia

Zakharova M.N.

Research Center of Neurology, Moscow, Russia

Leptomeningeal B-cell follicles in multiple sclerosis: a role in the pathogenesis and prognostic value

Authors:

Abramova A.A., Zakroyshchikova I.V., Krotenkova I.A., Kochergin I.A., Zakharova M.N.

More about the authors

Read: 5258 times


To cite this article:

Abramova AA, Zakroyshchikova IV, Krotenkova IA, Kochergin IA, Zakharova MN. Leptomeningeal B-cell follicles in multiple sclerosis: a role in the pathogenesis and prognostic value. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10‑2):21‑27. (In Russ.)
https://doi.org/10.17116/jnevro201911910221

Recommended articles:
Cognitive impairment in patients with multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):67-73
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127
A clinical case of X-linked adre­noleukodystrophy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):102-107
Arti­ficial inte­lligence capa­bilities in multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5):14-21

References:

  1. Rasseyannyi skleroz: voprosy diagnostiki i lecheniya. Pod red. Zakharovoi MN. M.: Media Mente; 2018. (In Russ.) https://doi.org/10.25697/MM.2018.01.11
  2. Zakharova MN. Monoklonal’nyeantitela v nevrologii: realii i perspektivy. Annaly klinicheskoi i eksperimental’noi nevrologii. Spetsial’nyi vypusk k 90-letiyu so dnya osnovaniya Instituta mozga. 2018;12. (In Russ.) https://doi.org/10.25692/ACEN.2018.5.13
  3. Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. Journal of Neuroimmunology. 2004;148(1-2):11-23. https://doi.org/10.1016/j.jneuroim.2003.10.056
  4. Pol S, Schweser F, Bertolino N, Preda M, Sveinsson M, Sudyn M, Babek N, Zivadinov R. Characterization of leptomeningeal inflammation in rodent experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Experimental Neurology. 2019;314:82-90. https://doi.org/10.1016/j.expneurol.2019.01.013
  5. Guseo A, Jellinger K. The significance of perivascular infiltrations in multiple sclerosis. Journal of Neurology. 1975;211(1):51-60. https://doi.org/10.1007/bf00312463
  6. Haugen M, Frederiksen JL, Degn M. B cell follicle-like structures in multiple sclerosis — with focus on the role of B cell activating factor. Journal of Neuroimmunology. 2014;273(1-2):1-7. https://doi.org/10.1016/j.jneuroim.2014.05.010
  7. Hjelmström P. Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. Journal of Leukocyte Biology. 2001;69(3):331-339. https://doi.org/10.1189/jlb.69.3.331
  8. von Büdingen H, Palanichamy A, Lehmann-Horn K, Michel B, Zamvil S. Update on the autoimmune pathology of multiple sclerosis: B-cells as disease-drivers and therapeutic targets. European Neurology. 2015;73(3-4):238-246. https://doi.org/10.1159/000377675
  9. Absinta M, Vuolo L, Rao A, Nair G, Sati P, Cortese IC, Ohayon J, Fenton K, Reyes-Mantilla MI, Maric D. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 2015;85(1):18-28. https://doi.org/10.1212/WNL.0000000000001587
  10. Wicken C, Nguyen J, Karna R, Bhargava P. Leptomeningeal inflammation in multiple sclerosis: Insights from animal and human studies. Multiple Sclerosis and Related Disorders. 2018;26:173-182. https://doi.org/10.1016/j.msard.2018.09.025
  11. Barkhof F, Valk J, Hommes OR, Scheltens P. Meningeal Gd-DTPA enhancement in multiple sclerosis. American Journal of Neuroradiology. 1992;13(1):397-400.
  12. Barkhof F, Reich DS. Can leptomeningeal enhancement be linked to multiple sclerosis? AAN Enterprises. 2015;84:762-763. https://doi.org/10.1212/WNL.0000000000001292
  13. Absinta M, Reich DS. Imaging of meningeal inflammation should become part of the routine MRI protocol — Yes. Multiple Sclerosis Journal. 2019;25(3):330-331. https://doi.org/10.1177/1352458518794082
  14. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130(4):1089-1104. https://doi.org/10.1093/brain/awm038
  15. Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, Serafini B, Aloisi F, Roncaroli F, Magliozzi R. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134(9):2755-2771. https://doi.org/10.1093/brain/awr182
  16. Fukuoka H, Hirai T, Okuda T, Shigematsu Y, Sasao A, Kimura E, Hirano T, Yano S, Murakami R, Yamashita Y. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T. American Journal of Neuroradiology. 2010;31(5):868-873. https://doi.org/10.3174/ajnr.A1937
  17. Eisele P, Griebe M, Szabo K, Wolf ME, Alonso A, Engelhardt B, Hennerici MG, Gass A. Investigation of leptomeningeal enhancement in MS: a postcontrast FLAIR MRI study. Neurology. 2015;84(8):770-775. https://doi.org/10.1212/WNL.0000000000001286
  18. Bode M, Tikkakoski T, Tuisku S, Kronqvist E, Tuominen H. Isolated neurosarcoidosis—MR findings and pathologic correlation: A case report. Acta Radiologica. 2001;42(6):563-567. https://doi.org/10.1080/028418501127347386
  19. Zivadinov R, Ramasamy D, Hagemeier J, Kolb C, Bergsland N, Schweser F, Dwyer M, Weinstock-Guttman B, Hojnacki D. Evaluation of leptomeningeal contrast enhancement using pre-and postcontrast subtraction 3D-FLAIR imaging in multiple sclerosis. American Journal of Neuroradiology. 2018;39(4):642-647. https://doi.org/10.3174/ajnr.A5541
  20. Koedel U, Fingerle V, Pfister H-W. Lyme neuroborreliosis—epidemiology, diagnosis and management. Nature Reviews Neurology. 2015;11(8):446. https://doi.org/10.1038/nrneurol.2015.121
  21. Dörr J, Krautwald S, Wildemann B, Jarius S, Ringelstein M, Duning T, Aktas O, Ringelstein EB, Paul F, Kleffner I. Characteristics of Susac syndrome: a review of all reported cases. Nature Reviews Neurology. 2013;9(6):307. https://doi.org/10.1038/nrneurol.2013.82
  22. Absinta M, Cortese IC, Vuolo L, Nair G, de Alwis MP, Ohayon J, Meani A, Martinelli V, Scotti R, Falini A. Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. Neurology. 2017;88(15):1439-1444. https://doi.org/10.1212/WNL.0000000000003820
  23. Geraldes R, Ciccarelli O, Barkhof F, De Stefano N, Enzinger C, Filippi M, Hofer M, Paul F, Preziosa P, Rovira A. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Reviews Neurology. 2018;14(4):199.
  24. Coulette S, Lecler A, Saragoussi E, Zuber K, Savatovsky J, Deschamps R, Gout O, Sabben C, Aboab J, Affortit A. Diagnosis and Prediction of Relapses in Susac Syndrome: A New Use for MR Postcontrast FLAIR Leptomeningeal Enhancement. American Journal of Neuroradiology. 2019;40(7):1184-1190. https://doi.org/10.3174/ajnr.A6103
  25. Haddad N, Roussel B, Pelcovits A, Rizvi S. Optic neuritis, encephalitis and leptomeningeal enhancement in a patient with anti-MOG antibodies: A case study. Multiple Sclerosis and Related Disorders. 2019;34:14-16. https://doi.org/10.1016/j.msard.2019.06.010
  26. Sugimoto T, Ishibashi H, Hayashi M, Tachiyama K, Fujii H, Kaneko K, Takahashi T, Kurokawa K, Yamawaki T. A case of anti-MOG antibody-positive unilaterally dominant meningoencephalitis followed by longitudinally extensive transverse myelitis. Multiple Sclerosis and Related Disorders. 2018;25:128-130. https://doi.org/10.1016/j.msard.2018.07.028
  27. Zurawski J, Lassmann H, Bakshi R. Use of magnetic resonance imaging to visualize leptomeningeal inflammation in patients with multiple sclerosis: a review. JAMA Neurology. 2017;74(1):100-109. https://doi.org/10.1001/jamaneurol.2016.4237
  28. Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Reviews Immunology. 2006;6(3):205. https://doi.org/10.1038/nri1786
  29. Ighani M, Jonas S, Izbudak I, O’Connor E, Choi S, Hua J, Harrison D. The Association Between Cortical Gray Matter Lesions and Leptomeningeal Enhancement on 7-Tesla MRI in Multiple Sclerosis (S31. 008). AAN Enterprises. 2019;92:38. https://doi.org/10.1111%2Fjon.12444
  30. Kooi E-J, Geurts JJ, van Horssen J, Bø L, van der Valk P. Meningeal inflammation is not associated with cortical demyelination in chronic multiple sclerosis. Journal of Neuropathology & Experimental Neurology. 2009;68(9):1021-1028. https://doi.org/10.1097/NEN.0b013e3181b4bf8f
  31. Makshakov G, Magonov E, Totolyan N, Nazarov V, Lapin S, Mazing A, Verbitskaya E, Trofimova T, Krasnov V, Shumilina M. Leptomeningeal contrast enhancement is associated with disability progression and grey matter atrophy in multiple sclerosis. Neurology Research International. 2017;8652463. https://doi.org/10.1155%2F2017%2F8652463
  32. Kutzelnigg A, Lassmann H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handbook of Clinical Neurology. 2014;122:15-58. https://doi.org/10.1016/B978-0-444-52001-2.00002-9
  33. Bergsland N, Ramasamy D, Tavazzi E, Hojnacki D, Weinstock-Guttman B, Zivadinov R. Leptomeningeal Contrast Enhancement Is Related to Focal Cortical Thinning in Relapsing-Remitting Multiple Sclerosis: A Cross-Sectional MRI Study. American Journal of Neuroradiology. 2019;40(4):620-625. https://doi.org/10.3174/ajnr.A6011
  34. Zivadinov R, Ramasamy DP, Vaneckova M, Gandhi S, Chandra A, Hagemeier J, Bergsland N, Polak P, Benedict RH, Hojnacki D. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Multiple Sclerosis Journal. 2017;23(10):1336-1345. https://doi.org/10.1177/1352458516678083
  35. Zivadinov R, Bergsland N, Carl E, Ramasamy DP, Hagemeier J, Dwyer MG, Lizarraga AA, Kolb C, Hojnacki D, Weinstock-Guttman B. Effect of Teriflunomide and Dimethyl Fumarate on Cortical Atrophy and Leptomeningeal Inflammation in Multiple Sclerosis: A Retrospective, Observational, Case-Control Pilot Study. Journal of Clinical Medicine. 2019;8(3):344. https://doi.org/10.3390/jcm8030344
  36. Bhargava P, Wicken C, Smith M, Cortese I, Reich D, Calabresi P, Mowry E. Phase 1 trial of intrathecal rituximab in progressive MS patients with evidence of leptomeningeal contrast enhancement (P3. 393). AAN Enterprises. 2018. https://doi.org/10.1016/j.msard.2019.02.013

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.