Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Амирова Т.О.

Институт долголетия с клиникой реабилитации и превентивной медицины ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»

Москалев А.А.

Институт долголетия с клиникой реабилитации и превентивной медицины ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»

Биомаркеры механизмов старения

Авторы:

Амирова Т.О., Москалев А.А.

Подробнее об авторах

Прочитано: 243 раза


Как цитировать:

Амирова Т.О., Москалев А.А. Биомаркеры механизмов старения. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2025;102(5‑2):108‑119.
Amirova TO, Moskalev AA. Biomarkers of aging mechanisms. Problems of Balneology, Physiotherapy and Exercise Therapy. 2025;102(5‑2):108‑119. (In Russ.)
https://doi.org/10.17116/kurort2025102052108

Рекомендуем статьи по данной теме:

Литература / References:

  1. Kroemer G, Campisi J, Sierra F, et al. From geroscience to precision geromedicine. Cell. 2025;186(9). https://doi.org/10.1016/j.cell.2025.03.011
  2. Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules ‒ A missing hallmark of aging. Review Ageing Res Rev. 2020 Sep;62:101097. https://doi.org/10.1016/j.arr.2020.101097
  3. Solovev I, Sergeeva A, Geraskina A, et al. Aging and physiological barriers: mechanisms of barrier integrity changes and implications for age-related diseases. Mol Biol Rep. 2024;51(1):917.  https://doi.org/10.1007/s11033-024-09833-7
  4. Franceschi C, Bonafè M, Capri M, et al. Inflammaging in 2025: from mechanisms to geroscience-guided interventions. Nat Aging. 2025;5:1441-1454. https://doi.org/10.1038/s43587-025-00938-7
  5. Moskalev AA, Skulachev VP. Telomere length, ageing, and lifespan: a mini-review. Ageing Res Rev. 2012;11(2):661-684.  https://doi.org/10.1016/j.arr.2012.02.001
  6. Ryu G, Koh Y, Jaiswal S, Yoon SS. Clonal hematopoiesis: elements associated with clonal expansion and diseases. Blood Res. 2025 Mar;60(1):17.  https://doi.org/10.1007/s44313-025-00065-7
  7. Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339(1-2):1-9.  https://doi.org/10.1016/j.cccn.2003.09.010
  8. Graille M, Wild P, Sauvain J-J, et al. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int J Mol Sci. 2020;21(11):3743. https://doi.org/10.3390/ijms21113743
  9. Maynard S, Schurman SH, Harboe C, et al. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis. 2009;30(1):2-10.  https://doi.org/10.1093/carcin/bgn250
  10. Mason CE, Sierra MA, Feng HJ, Bailey SM. Telomeres and aging: on and off the planet! Biogerontology. 2024;25(2):313-327.  https://doi.org/10.1007/s10522-024-10098-7
  11. Takubo K, Aida J, Izumiyama-Shimomura N, Ishikawa N, et al. Changes of telomere length with aging. Geriatr Gerontol Int. 2010 Jul;10 (Suppl 1):S197-206.  https://doi.org/10.1111/j.1447-0594.2010.00605.x
  12. Ye Q, Apsley AT, Etzel L, et al. Telomere length and chronological age across the human lifespan: a systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Res Rev. 2023;90:102031. https://doi.org/10.1016/j.arr.2023.102031
  13. Bawamia B, Spyridopoulos I. Activation of telomerase by TA-65 enhances immunity and reduces inflammation post myocardial infarction. Geroscience. 2023;45(4):2689-2705. https://doi.org/10.1007/s11357-023-00794-6
  14. Zaman Q, Zhang D, Reddy OS, et al. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging and Disease. 2022;13(6):1845-1861. https://doi.org/10.14336/ad.2022.0126
  15. Yao M, Zhang L, Wang L. Astragaloside IV: A promising natural neuroprotective agent for neurological disorders. Biomed Pharmacother. 2023;159:114229. https://doi.org/10.1016/j.biopha.2023.114229
  16. Tamae K, Kawai K, Yamasaki S, et al. Effect of age, smoking and other lifestyle factors on urinary 7-methylguanine and 8-hydroxydeoxyguanosine. Cancer Sci. 2009 Apr;100(4):715-721.  https://doi.org/10.1111/j.1349-7006.2009.01088.x
  17. Holmes HE, Valentin RE, Jernerén F, et al.; Alzheimer’s Disease Neuroimaging Initiative. Elevated homocysteine is associated with increased rates of epigenetic aging in a population with mild cognitive impairment. Aging Cell. 2024 Oct;23(10):e14255. https://doi.org/10.1111/acel.14255
  18. Selhub J, Jacques PF, Rosenberg IH, et al. Serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey (1991-1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med. 1999 Sep;131(5):331-339.  https://doi.org/10.7326/0003-4819-131-5-199909070-00003
  19. Refsum H, Smith AD, Ueland PM, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004 Jan;50(1):3-32.  https://doi.org/10.1373/clinchem.2003.021634
  20. Kato Y, Dozaki N, Nakamura T, et al. Quantification of Modified Tyrosines in Healthy and Diabetic Human Urine using LC/MS/MS. J Clin Biochem Nutr. 2008;44(1):35-43.  https://doi.org/10.3164/jcbn.08-185
  21. Orhan H, Coolen S, Meerman JH. Quantification of urinary o,o’-dityrosine, a biomarker for oxidative damage to proteins, by high performance liquid chromatography with triple quadrupole tandem mass spectrometry. A comparison with ion-trap tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Nov;827(1):104-108.  https://doi.org/10.1016/j.jchromb.2005.03.043
  22. Yoon BA, Kim YH, Nam SH, et al. p62/sequestosome-1 as a severity-reflecting plasma biomarker in Charcot-Marie-Tooth disease type 1A. Sci Rep. 2024 May;14(1):10972. https://doi.org/10.1038/s41598-024-61794-w
  23. Emanuele E, Minoretti P, Sanchis-Gomar F, et al. Can enhanced autophagy be associated with human longevity? Serum levels of the autophagy biomarker beclin-1 are increased in healthy centenarians. Rejuvenation Research. 2014;17(6):518-524.  https://doi.org/10.1089/rej.2014.1607
  24. Peng PS, Kao TW, Chang PK, et al. Association between HOMA-IR and Frailty among US. Middle-aged and Elderly Population. Scientific Reports. 2019;9:4238. https://doi.org/10.1038/s41598-019-40902-1
  25. Ekblad LL, Rinne JO, Puukka P, et al. Insulin Resistance Predicts Cognitive Decline: An 11-Year Follow-up of a Nationally Representative Adult Population Sample. Diabetes Care. 2017;40(6):751-758.  https://doi.org/10.2337/dc16-2001
  26. Hou X-Z, Lv Y-F, Li Y-S, et al. Association between different insulin resistance surrogates and all-cause mortality in patients with coronary heart disease and hypertension: NHANES longitudinal cohort study. Cardiovascular Diabetology. 2024;23:86.  https://doi.org/10.1186/s12933-024-02173-7
  27. Gayoso-Diz P, Otero-González A, Rodriguez-Alvarez MX, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13:47.  https://doi.org/10.1186/1472-6823-13-47
  28. Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014 Aug;13(4):769-771.  https://doi.org/10.1111/acel.12213
  29. Cheng J, Luo Y, Li Y, et al. Sex- and body mass index-specific reference intervals for serum leptin: a population-based study in China. Nutr Metab (Lond). 2022;19:54.  https://doi.org/10.1186/s12986-022-00689-x
  30. Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Review Am J Clin Nutr. 2010 Jan;91(1):258S-261S. https://doi.org/10.3945/ajcn.2009.28449c
  31. Im JA, Kim S-H, Lee J-W, et al. Association between hypoadiponectinemia and cardiovascular risk factors in nonobese healthy adults. Metabolism. 2006 Nov;55(11):1546-1550. https://doi.org/10.1016/j.metabol.2006.06.027
  32. Hopkins TA, Ouchi N, Shibata R, Walsh K. Adiponectin actions in the cardiovascular system. Cardiovasc Res. 2007;74(1):11-18.  https://doi.org/10.1016/j.cardiores.2006.10.009
  33. Varvel SA, Pottala JV, Thiselton DL, et al. Serum α-hydroxybutyrate predicts elevated 1-h glucose levels and early-phase β-cell dysfunction during OGTT. BMJ Open Diabetes Res Care. 2014;2(1):e000038. https://doi.org/10.1136/bmjdrc-2014-000038
  34. Rousseau AF, Dongier A, Colson C, et al. Serum acylcarnitines profile in critically ill survivors according to illness severity and ICU length of stay: An observational study. Nutrients. 2023;15(10):2392. https://doi.org/10.3390/nu15102392
  35. Debray F-G, Mitchell GA, Allard P, et al. Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis. Clin Chem. 2007;53(5):916-921.  https://doi.org/10.1373/clinchem.2006.081166
  36. Uthayakumar B, Soliman H, Bragagnolo ND, et al. Age-associated change in pyruvate metabolism investigated with hyperpolarized 13C-MRI of the human brain. Hum Brain Mapp. 2023;44(10):4052-4063. https://doi.org/10.1002/hbm.26329
  37. Ross JM, Öberg J, Brené S, et al. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. PNAS. 2010;107(46):20087-20092. https://doi.org/10.1073/pnas.1008189107
  38. Mintun MA, Vlassenko AG, Rundle MM, et al. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. PNAS. 2004;101(16):659-664.  https://doi.org/10.1073/pnas.0307457100
  39. Xia CY, Liu Y, Yang HR, et al. Reference Intervals of Mitochondrial DNA Copy Number in Peripheral Blood for Chinese Minors and Adults. Chinese Medical Journal (Engl.). 2017 Oct;130(20):2435-2440. https://doi.org/10.4103/0366-6999.216395
  40. Picard M. Blood mitochondrial DNA copy number: What are we counting? Mitochondrion. 2021 Sep;60:1-11.  https://doi.org/10.1016/j.mito.2021.06.010
  41. Gahan ME, Miller F, Lewin SR, et al. Quantification of mitochondrial DNA in peripheral blood mononuclear cells and subcutaneous fat using real-time polymerase chain reaction. J Clin Virol. 2001 Oct;22(3):241-247.  https://doi.org/10.1016/s1386-6532(01)00195-0
  42. Hurtado-Roca Y, Ledesma M, Gonzalez-Lazaro M, et al. Adjusting MtDNA Quantification in Whole Blood for Peripheral Blood Platelet and Leukocyte Counts. PLoS One. 2016 Oct;11(10):e0163770. https://doi.org/10.1371/journal.pone.0163770
  43. Dahl JH, Brocks T. Rapid Quantitative Analysis of 8-iso-PGF2α Using LC–MS/MS. J Chromatogr B. 2010;878(28):2659-2663.
  44. Martínez-Zamudio RI, Dewald HK, Vasilopoulos T, et al. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20(5):e13344. https://doi.org/10.1111/acel.13344
  45. Jelic TM, Estalilla OC, Vos JA, et al. Flow Cytometric Enumeration of Peripheral Blood CD34+ Cells Predicts Bone Marrow Pathology in Patients with Less Than 1% Blasts by Manual Count. Journal of Blood Medicine. 2023;14:519-535.  https://doi.org/10.2147/JBM.S417432
  46. Liu M, Chu J, Gu Y, et al. Serum N¹-Methylnicotinamide is Associated With Coronary Artery Disease in Chinese Patients. Journal of the American Heart Association (2017). 2017 Feb;6(2):e004328. https://doi.org/10.1161/jaha.116.004328
  47. Liu M, Li L, Chu J, Zhu B, et al. Serum N¹-Methylnicotinamide Is Associated With Obesity and Diabetes in Chinese. Journal of Clinical Endocrinology & Metabolism (2015). 2015 Aug;100(8):3112-3117. https://doi.org/10.1210/jc.2015-1732
  48. Chu J, Liu M, Dai G, et al. Simultaneous determination of nicotinamide and N¹-methylnicotinamide in human serum by LC–MS/MS to associate their serum concentrations with obesity. Biomed Chromatogr. 2022 Feb;36(2):e5261. https://doi.org/10.1002/bmc.52
  49. Li G, Wu W, Zhang X, et al. Serum levels of tumor necrosis factor-α in patients with IgA nephropathy. BMC Nephrology. 2018;19:326.  https://doi.org/10.1186/s12882-018-1069-0
  50. Wu H, Wen Y, Yue C, et al. Serum TNF-α Level Is Associated with Disease Severity in IgA Vasculitis. Disease Markers. 2020;2020:5514145. https://doi.org/10.1155/2020/5514145
  51. Kellum JA, Kong L, Fink MP, et al. Understanding the Inflammatory Cytokine Response in Pneumonia and Sepsis. Archives of Internal Medicine. 2007;167(15):1655-1663. https://doi.org/10.1001/archinte.167.15.1655
  52. Pearson TA, Mensah GA, Alexander RW, et al. Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice. Circulation. 2003;107:499-511.  https://doi.org/10.1161/01.cir.0000052939.59093.45
  53. Myers GL, Rifai N, Tracy RP, et al. CDC/AHA Workshop on Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: report from the laboratory science discussion group.. Circulation. 2004;110:e545-e549. https://doi.org/10.1161/01.cir.0000148980.87579.5e
  54. Ridker PM, Cook N. Clinical Usefulness of Very High and Very Low Levels of C-Reactive Protein Across the Full Range of Framingham Risk Scores. Circulation. 2004;109(16):1955-1959. https://doi.org/10.1161/01.cir.0000125690.80303.a8
  55. Vasile VC, Meeusen JW, Inojosa JRM, et al. Ceramide Scores Predict Cardiovascular Outcomes in Secondary Prevention. Arteriosclerosis, Thrombosis, and Vascular Biology. 2021;41(4). https://doi.org/10.1161/atvbaha.120.315530
  56. Torta F, Hoffmann N, Burla B, et al. Concordant inter-laboratory derived concentrations of ceramides in human plasma reference materials via authentic standards. Nature Communications. 2024 Oct;15(1):8562. https://doi.org/10.1038/s41467-024-52087-x
  57. Vasile VC, Meeusen JW, Medina Inojosa JR, et al. Ceramide Scores Predict Cardiovascular Risk in the Community. Arterioscler Thromb Vasc Biol. 2021;41(4):1558-1569. https://doi.org/10.1161/ATVBAHA.120.315530
  58. Armstrong M, Liu AH, Harbeck R, et al. Leukotriene-E4 in human urine: comparison of on-line purification and LC–MS/MS to affinity purification followed by EIA. J Chromatogr B. 2009;877(27):3169-3174. https://doi.org/10.1016/j.jchromb.2009.08.011
  59. Kishi N, Mano N, Asakawa N. Direct Injection Method for Quantitation of Endogenous Leukotriene E₄ in Human Urine by LC/ESI-MS/MS with a Column-switching Technique. Analytical Sciences. 2001;17(6):709-713.  https://doi.org/10.2116/analsci.17.709
  60. Prucha M, Herold I, Zazula R, et al. Significance of lipopolysaccharide-binding protein (an acute-phase protein) in monitoring critically ill patients. Critical Care. 2003;7(6):R154-R159. https://doi.org/10.1186/cc2386
  61. Zweigner J, Gramm HJ, Singer OC, et al. High concentrations of lipopolysaccharide-binding protein in serum of patients with severe sepsis or septic shock inhibit the lipopolysaccharide response in human monocytes. Blood. 2001;98(13):3800-3808. https://doi.org/10.1182/blood.v98.13.3800
  62. Gallay P, Barras C, Tobias PS, et al. Lipopolysaccharide (LPS)-binding protein in human serum determines the tumor necrosis factor response of monocytes to LPS. Journal of Infectious Diseases. 1994;170(5):1319-1322. https://doi.org/10.1093/infdis/170.5.1319
  63. Mabrey FL, Morrell ED, Bhatraju PK, et al. sCD14 Subtype (Presepsin) Levels Are Associated With Disease Severity and Mortality in Critically Ill Patients With Sepsis. Critical Care Explorations. 2021;3(12):e0591. https://doi.org/10.1097/CCE.0000000000000591
  64. Reiner AP, Lange EM, Jenny NS, et al. Soluble CD14: Genomewide Association Analysis and Relationship to Cardiovascular Risk and Mortality in Older Adults. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(1):158-164.  https://doi.org/10.1161/ATVBAHA.112.300421
  65. Tang WHW, Wang Z, Levison BS, et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. New England Journal of Medicine. 2013;368(17):1575-1584. https://doi.org/10.1056/NEJMoa1109400
  66. Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health‒Cause or Effect? Nutrients. 2020;12(5):1330. https://doi.org/10.3390/nu12051330
  67. Fang Q, Lei Y, Wu H, et al. Plasma reference interval of Trimethylamine-N-oxide in healthy adults: A multicenter study using Trimethylamine-N-oxide assay kit for analysis and validation. Clinica Chimica Acta. 2025;571:120223. https://doi.org/10.1016/j.cca.2025.120223
  68. de la Cuesta-Zuluaga J, Kelley ST, Chen Y, et al. Age- and Sex-Dependent Patterns of Gut Microbial Diversity in Human Adults. mSystems. 2019;4(4). https://doi.org/10.1128/msystems.00261-19
  69. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012 Aug;488(7410):178-184.  https://doi.org/10.1038/nature11319
  70. Magne F, Gotteland M, Gauthier L, et al. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 2020 May;12(5):1474. https://doi.org/10.3390/nu12051474
  71. Otero-Estévez O, De Chiara L, Rodríguez-Girondo M, et al. Serum matrix metalloproteinase-9 in colorectal cancer family-risk population screening. Scientific Reports. 2015 Aug;5:13030. https://doi.org/10.1038/srep13030
  72. Wilson S, Damery S, Stocken DD, et al. Serum matrix metalloproteinase 9 and colorectal neoplasia: a community-based evaluation of a potential diagnostic test. British Journal of Cancer. 2012;106(8):1431-1438. https://doi.org/10.1038/bjc.2012.93
  73. Hurst NG, Stocken DD, Wilson S, et al. Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients. British Journal of Cancer. 2007;97(7):971-977.  https://doi.org/10.1038/sj.bjc.6603958
  74. Mroczko B, Groblewska M, Okulczyk B, et al. The diagnostic value of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) determination in the sera of colorectal adenoma and cancer patients. International Journal of Colorectal Disease. 2010;25(10):1177-1184. https://doi.org/10.1007/s00384-010-0991-9
  75. Starcher B, Scott M. Fractionation of urine to allow desmosine analysis by radioimmunoassay. Ann Clin Biochem. 1992 Jan;29 (Pt1):72-78.  https://doi.org/10.1177/000456329202900111
  76. McClintock DE, Starcher B, Eisner MD, et al.; NHLBI ARDS Network. Higher urine desmosine levels are associated with mortality in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2006 Oct;291(4):L566-571.  https://doi.org/10.1152/ajplung.00457.2005
  77. Annovazzi L, Viglio S, Gheduzzi D, et al. High levels of desmosines in urine and plasma of patients with pseudoxanthoma elasticum. Eur J Clin Invest. 2004 Feb;34(2):156-164.  https://doi.org/10.1111/j.1365-2362.2004.01306.x
  78. Winfield KR, Gard S, Kent GN, et al. Assay for urinary desmosines in a healthy pre-pubertal population using an improved extraction technique. Annals of Clinical Biochemistry. 2006 Mar;43(Pt 2):146-152.  https://doi.org/10.1258/000456306776021571
  79. Lindberg CA, Engström G, de Verdier MG, et al. Total desmosines in plasma and urine correlate with lung function. Eur Respir J. 2012 Apr;39(4):839-845.  https://doi.org/10.1183/09031936.00064611
  80. Levitt MD, Levitt DG. Quantitative Evaluation of D-Lactate Pathophysiology: New Insights into the Mechanisms Involved and the Many Areas in Need of Further Investigation. Clin Exp Gastroenterol. 2020 Sep;13:321-337.  https://doi.org/10.2147/ceg.s260600
  81. Ewaschuk JB, Naylor JM, Zello GA. D-lactate in human and ruminant metabolism. J Nutr. 2005;135(7):1619-1625. https://doi.org/10.1093/jn/135.7.1619
  82. Herrera DJ, Morris K, Johnston C, Griffiths P. Automated assay for plasma D-lactate by enzymatic spectrophotometric analysis with sample blank correction. Ann Clin Biochem. 2008 Mar;45(Pt 2):177-183.  https://doi.org/10.1258/acb.2007.007088
  83. Leger D, Laudon M, Zisapel N. Nocturnal 6-sulfatoxymelatonin excretion in insomnia and its relation to the response to melatonin replacement therapy. Am J Med. 2004;116(2):91-95.  https://doi.org/10.1016/j.amjmed.2003.07.017
  84. Braam W, Spruyt K. Reference intervals for 6-sulfatoxymelatonin in urine: a meta-analysis. Sleep Med Rev. 2022;63:101614. https://doi.org/10.1016/j.smrv.2022.101614
  85. Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biology. 2013;1(1):319-331.  https://doi.org/10.1016/j.redox.2013.04.001
  86. Shoeb M, Ansari NH, Srivastava SK, Ramana KV. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr Med Chem. 2014;21(2):230-237.  https://doi.org/10.2174/09298673113209990181
  87. Strohmaier H, Hinghofer-Szalkay H, Schaur RJ. Detection of 4-hydroxynonenal (HNE) as a physiological component in human plasma. J Lipid Mediat Cell Signal. 1995;11(1):51-61.  https://doi.org/10.1016/0929-7855(94)00027-a
  88. Semchyshyn HM. Reactive Carbonyl Species In Vivo: Generation and Dual Biological Effects. Oxid Med Cell Longev. 2014;2014:417842. https://doi.org/10.1155/2014/417842
  89. Benloucif S, Burgess HJ, et al. Measuring melatonin in humans: DLMO and phase assessment. J Clin Sleep Med. 2008;4(1):66-69.  https://doi.org/10.5664/jcsm.27083
  90. Molina TA, Burgess HJ. Calculating the Dim Light Melatonin Onset: The Impact of Threshold and Sampling Rate. Chronobiol Int. 2011;28(8):714-718.  https://doi.org/10.3109/07420528.2011.597531
  91. Kennaway DJ. The dim light melatonin onset across ages, methodologies, and sex and its relationship with morningness/eveningness. Sleep. 2023;46(5):zsad033. https://doi.org/10.1093/sleep/zsad033
  92. Rzepka-Migut B, Paprocka J. Melatonin-Measurement Methods and Factors Modifying the Results. Int J Environ Res Public Health. 2020;17(6):1916. https://doi.org/10.3390/ijerph17061916
  93. Корчажкина Н.Б., Михайлова А.А., Решетова И.В. и др. Современные подходы к разработке системы валидных методов мониторинга индивидуального здоровья и поддержания активного долголетия. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2023;100(6):6-13.  https://doi.org/10.17116/kurort20231000616
  94. Котенко К.В., Михайлова А.А., Бадимова А.В. и др. Определение прогностически значимых маркеров донозологического выявления предикторов ожирения и метаболических нарушений. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2023;100(5-2):21. 
  95. Корчажкина Н.Б., Михайлова А.А., Бадимова А.В. и др. Методы и маркеры донозологической диагностики и мониторинга индивидуального здоровья и поддержания активного долголетия. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2023;100(5-2):20-21. 

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.