The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Golubova T.F.

Research Institute of Children’s Balneology, Physiotherapy and Medical Rehabilitation

Vlasenko S.V.

Research Institute of Children’s Balneology, Physiotherapy and Medical Rehabilitation

Marusich I.I.

Research Institute of Children’s Balneology, Physiotherapy and Medical Rehabilitation

Otinov M.D.

Research Institute of Children’s Balneology, Physiotherapy and Medical Rehabilitation

Vlasenko F.S.

Technologies of Health and Rehabilitation (Structural Subdivision) of V.I. Vernadsky Crimean Federal University

Osmanov E.A.

Research Institute of Children’s Balneology, Physiotherapy and Medical Rehabilitation

Current approaches to the use of robotic devices in rehabilitation complex of children with cerebral palsy

Authors:

Golubova T.F., Vlasenko S.V., Marusich I.I., Otinov M.D., Vlasenko F.S., Osmanov E.A.

More about the authors

Read: 1685 times


To cite this article:

Golubova TF, Vlasenko SV, Marusich II, Otinov MD, Vlasenko FS, Osmanov EA. Current approaches to the use of robotic devices in rehabilitation complex of children with cerebral palsy. Problems of Balneology, Physiotherapy and Exercise Therapy. 2023;100(5):36‑44. (In Russ.)
https://doi.org/10.17116/kurort202310005136

Recommended articles:
Dyna­mics of motor and functional diso­rders in the early reco­very period after ischemic stroke. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(5):13-22
Impact of various reha­bilitation programs on anxiety and depression after surgery of early-stage cervical cancer. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(5):40-44
Effi­ciency of complex medi­cal reha­bilitation after pulmonary enda­rterectomy. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(6):629-636

References:

  1. Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr Dis Treat. 2020;16:1505-1518. https://doi.org/10.2147/NDT.S235165
  2. Novak I, Morgan C, Fahey M, et al. State of the evidence traffic lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. Curr Neurol Neurosci Rep. 2020;20:3.  https://doi.org/10.1007/s11910-020-1022-z
  3. Balgayeva M, Bulekbayeva S. Effectiveness of the combined use of robotic kinesiotherapy and botulinum therapy in the complex rehabilitation of children with cerebral palsy. Asian J Pharm Clin Res. 2018;11:360-364.  https://doi.org/10.22159/ajpcr.2018.v11i9.26541
  4. Llamas-Ramos R, Sánchez-González JL, Llamas-Ramos I. Robotic Systems for the Physiotherapy Treatment of Children with Cerebral Palsy: A Systematic Review. Int J Environ Res Public Health. 2022;19(9):5116. https://doi.org/10.3390/ijerph19095116
  5. Ammann-Reiffer C, Labruyère R. Letter to the Editor on Effects of Antigravity Treadmill Training on Gait, Balance, and Fall Risk in Children With Diplegic Cerebral Palsy. American Journal of Physical Medicine Rehabilitation. 2018;97(6):e55-e56.  https://doi.org/10.1097/PHM.0000000000000827
  6. He YY, Zhang XY, Yung WH, et al. Role of BDNF in central motor structures and motor diseases. Mol Neurobiol. 2013;48:783-793. 
  7. Weissmiller AM, Wu C. Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener. 2012;1:14.  https://doi.org/10.1186/2047-9158-1-14
  8. Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, et al. Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol. 2016;58:485-491.  https://doi.org/10.1111/dmcn.12950
  9. Barber L, Hastings-Ison T, Baker R, et al. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53:543-548.  https://doi.org/10.1111/j.1469-8749.2011.03913.x
  10. Massaad A, Assi A, Bakouny Z, et al. Alterations of treatment-naïve pelvis and thigh muscle morphology in children with cerebral palsy. J Biomech. 2019;82:178-185.  https://doi.org/10.1016/j.jbiomech.2018.10.022
  11. Larkin-Kaiser KA, Howard JJ, Leonard T, et al. Relationship of muscle morphology to hip displacement in cerebral palsy: a pilot study investigating changes intrinsic to the sarcomere. J Orthop Surg Res. 2019;14:187.  https://doi.org/10.1186/s13018-019-1239-1
  12. Chen Y, He L, Xu K, et al. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers. PLoS One. 2018;13:e0190642. https://doi.org/10.1371/journal.pone.0190642
  13. Aycardi LF, Cifuentes CA, Múnera M, et al. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J Neuroeng Rehabil. 2019;16:15.  https://doi.org/10.1186/s12984-019-0485-0
  14. Tornberg AB, Lauruschkus K. Non-ambulatory children with cerebral palsy: Effects of four months of static and dynamic standing exercise on passive range of motion and spasticity in the hip. Peer J. 2020;8:e8561. https://doi.org/10.7717/peerj.8561
  15. Ammann-Reiffer C, Bastiaenen CH, Meyer-Heim AD, et al. Lessons learned from conducting a pragmatic, randomized, crossover trial on robot-assisted gait training in children with cerebral palsy (PeLoGAIT). J Pediatr Rehabil Med. 2020;13:137-148.  https://doi.org/10.3233/PRM-190614
  16. Thalman C, Artemiadis P. A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications. Wearable Technol. 2020;1:e3.  https://doi.org/10.1017/wtc.2020.4
  17. Frolov AA, Bobrov PD. Brain-computer interface: neurophysiological prerequisites and clinical application. Text: direct. Journal of higher nervous activity. 2017;67(4):365-376. (In Russ.). https://doi.org/10.7868/S0044467717040013
  18. Kozhina GV, Levik YuS. Popov AK, Smetanin BN. Influence of passive tactile contact of the hand on maintaining the vertical posture of a person. Human Physiol. 2017;43(4):70-77. (In Russ.). https://doi.org/10.31089/1026-9428-2020-60-5-318-328
  19. Dzheldubaeva ER, Biryukova EA, Makhin SA, Babanov ND, Chuyan EN, Kubryak OV. Electromyogram Maximum Amplitudes in Arm Flexors and Extensors in Healthy Volunteers in a Series of the Power Joystick Control Training Sessions. Neurosci Behav Physiol. 2020;106(1):44-54. (In Russ.). https://doi.org/10.31857/S0869813920010069
  20. Petrarca M, Frascarelli F, Carniel S, et al. Robotic-assisted locomotor treadmill therapy does not change gait pattern in children with cerebral palsy. Int J Rehabil Res. 2021;44:69-76.  https://doi.org/10.1097/MRR.0000000000000451
  21. Yaşar B, Atıcı E, Razaei DA, et al. Effectiveness of Robot-Assisted Gait Training on Functional Skills in Children with Cerebral Palsy. J Pediatr Neurol. 2022;20(03):164-170.  https://doi.org/10.1055/s-0041-1725128
  22. Chen J, Hochstein J, Kim C, et al. A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy. Front Robot AI. 2021;8:702137. https://doi.org/10.3389/frobt.2021.702137
  23. Bunge LR, Davidson AJ, Helmore BR, et al. Effectiveness of powered exoskeleton use on gait in individuals with cerebral palsy: A systematic review. PLoS One. 2021;16(5):e0252193. https://doi.org/10.1371/journal.pone.0252193
  24. Fang Y, Lerner ZF. Feasibility of Augmenting Ankle Exoskeleton Walking Performance with Step Length Biofeedback in Individuals with Cerebral Palsy. IEEE Trans Neural Syst Rehabil Eng. 2021;29:442-449.  https://doi.org/10.1109/TNSRE.2021.3055796
  25. Khomami AM, Najafi F. A survey on soft lower limb cable-driven wearable robots without rigid links and joints. Robot Auton Syst. 2021;144:103846. https://doi.org/10.1016/j.robot.2021.103846
  26. Roberts H, Shierk A, Clegg NJ, et al. Constraint Induced Movement Therapy Camp for Children with Hemiplegic Cerebral Palsy Augmented by Use of an Exoskeleton to Play Games in Virtual Reality. Phys Occup Ther Pediatr. 2020;41:150-165.  https://doi.org/10.1080/01942638.2020.1812790
  27. Schless SH, Cenni F, Bar-On L, et al. Medial gastrocnemius volume and echo-intensity after botulinum neurotoxin a interventions in children with spastic cerebral palsy. Dev Med Child Neurol. 2019;61:783-790.  https://doi.org/10.1111/dmcn.14056
  28. Bjornson KF, Zhou C, Stevenson R, et al. Walking activity patterns in youth with cerebral palsy and youth developing typically. Disabil Rehabil. 2014;36:1279-1284. https://doi.org/10.3109/09638288.2013.845254
  29. Choi H, Kang BB, Jung B-K, et al. Exo-Wrist: A Soft Tendon-Driven Wrist-Wearable Robot With Active Anchor for Dart-Throwing Motion in Hemiplegic Patients. IEEE Robot Autom Lett. 2019;4:4499-4506. https://doi.org/10.1109/LRA.2019.2931607
  30. Shin J, Yang S, Park C, et al. Comparative effects of passive and active mode robot-assisted gait training on brain and muscular activities in sub-acute and chronic stroke. NeuroRehabilitation. 2022;51(1):51-63.  https://doi.org/10.3233/NRE-210304
  31. Romanov AI, Stupin VA, Silina EV. Perspectives and value of external control devices (exoskeletons) for effective rehabilitation of patients with impaired motor function. Health care of the Russian Federation. 2021;65(3):287-294. (In Russ.). https://doi.org/10.47470/0044-197X-2021-65-3-287-294
  32. Kuschan J, Krüger J. Fatigue recognition in overhead assembly based on a soft robotic exosuit for worker assistance. CIRP Ann. 2021;70:9-12.  https://doi.org/10.1016/j.cirp.2021.04.034
  33. Gonzalez A, Garcia L, Kilby J, et al. Robotic devices for paediatric rehabilitation: a review of design features. Biomed Eng Online. 2021;20:89.  https://doi.org/10.1186/s12938-021-00920-5
  34. Yazıcı M, Livanelioğlu A, Gücüyener K, et al. Effects of robotic rehabilitation on walking and balance in pediatric patients with hemiparetic cerebral palsy. Gait Posture. 2019;70:397-402.  https://doi.org/10.1016/j.gaitpost.2019.03.017
  35. Kim H, Hyun-Yoon H-Y, Shin Y-I. Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study With a Four-Week Follow-Up. Ieee transactions on neural systems and rehabilitation engineering. 2015;23(4):636-642.  https://doi.org/10.1109/TNSRE.2015.2404936
  36. Tiboni M, Borboni A, Vérité F, et al. Sensors and Actuation Technologies in Exoskeletons: A Review. Sensors (Basel). 2022;22(3):884.  https://doi.org/10.3390/s22030884
  37. Tricomi E, Lotti N, Missiroli F, et al. Underactuated Soft Hip Exosuit Based on Adaptive Oscillators to Assist Human Locomotion. IEEE Robot Autom Lett. 2022;7:936-943.  https://doi.org/10.1109/LRA.2021.3136240
  38. Cherni Y, Girardin-Vignola G, Ballaz L, et al. Reliability of maximum isometric hip and knee torque measurements in children with cerebral palsy using a paediatric exoskeleton. Lokomat Neurophysiol Clin Neurophysiol. 2019;49:335-342.  https://doi.org/10.1016/j.neucli.2018.12.001
  39. Rodriguez-Fernandez A, Lobo-Prat J, Font-Llagunes JM. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil. 2021;18:22.  https://doi.org/10.1186/s12984-021-00815-5
  40. Aycardi LF, Cifuentes CA, Múnera M, et al. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J Neuroeng Rehabil. 2019;16:15.  https://doi.org/10.1186/s12984-019-0485-0
  41. Dusing SC, Harbourne RT, Lobo MA, et al. A Physical Therapy Intervention to Advance Cognitive and Motor Skills: A Single Subject Study of a Young Child with Cerebral Palsy. Pediatr Phys Ther. 2019;31:347-352.  https://doi.org/10.1097/PEP.0000000000000635
  42. Kotov SV, Isakova EV, Lizhdvoy VYu, et al. Robotic recovery of walking function in patients in the early recovery period of stroke. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2020;120(8-2):73-80. (In Russ.). https://doi.org/10.17116/jnevro202012008273
  43. Kotov SV, Petrushanskaya KA, Lizhdvoi VYu, et al. Clinical and physiological justification of the use of the exoskeleton EXOATHLET when walking for patients with multiple sclerosis. Russian Journal of Biomechanics. 2020;24(2):148-166. (In Russ.).
  44. Moshchenko MG, Egorov GP, Babanov ND, Kubryak OV. Passive exoskeleton of human lower extremities and a lightweight protocol for assessing physiological effectiveness. Dynamics of complex systems-XXI century. 2019;13(4):23-28. (In Russ.).
  45. Larina NV, Korsunskaya LL, Vlasenko SV. The Exokist-2 complex in the rehabilitation of the upper limb in cerebral palsy using a non-invasive brain-computer interface. Neuromuscular Diseases. 2019;9(4):44-50. (In Russ.). https://doi.org/10.17650/2222-8721-2019-9-4-44-50
  46. Larina NV, Pavlenko VB, Korsunskaya LL, et al. Possibilities of rehabilitation of children with cerebral palsy syndrome using robotic devices and biofeedback. Text: direct. Bulletin of Siberian medicine. 2020;19(3):156-165. (In Russ.). https://doi.org/10.20538/1682-0363-2020-3-156-165
  47. Korsunskaya LL, Savchuk EO, Larina NV, et al. The effectiveness of the combined technique Noninvasive interface Brain — Computer — Exoskeleton of the hand in combination with nootropic therapy in the rehabilitation of children with cerebral palsy. Text: direct. Medical Bulletin of the North Caucasus. 2020;15(1):58-61. (In Russ.). https://doi.org/10.14300/mnnc.2020.15012
  48. Blankertz B, Losch F, Krauledat M, et al. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects. IEEE Trans Biomed. 2008;55(10):2452-2462. https://doi.org/10.1109/TBME.2008.923152
  49. Kim TW, Lee BH. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial. J Phys Ther Sci. 2016;28(9):2491-2494.
  50. Démas J, Bourguignon M, Périvier M, et al. Mu rhythm: State of the art with special focus on cerebral palsy. Ann Phys Rehabil Med. 2019;S18770657(19):30094-30096. https://doi.org/10.1016/j.rehab.2019.06.007

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.