The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Efendieva M.Kh.

Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021

Budzinskaia M.V.

FGBU "Nauchno-issledovatel'skiĭ institut glaznykh bolezneĭ" RAMN, Moskva

Kadyshev V.V.

Research Centre for Medical Genetics, 1 Moskvorechie St., Moscow, Russian Federation, 115478

Zinchenko R.A.

Research Center for Medical Genetics, 1 Moskvorech’e St., Moscow, Russian Federation, 115478;
Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow, Russian Federation, 117997

Savochkina O.A.

Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021

Pupysheva A.D.

I.M. Sechenov First Moscow State Medical University, Department of Ophthalmology, 8-2 Trubetskaya St., Moscow, Russian Federation, 119991

Molecular and genetic aspects of age-related macular degeneration and glaucoma (in Russian only)

Authors:

Efendieva M.Kh., Budzinskaia M.V., Kadyshev V.V., Zinchenko R.A., Savochkina O.A., Pupysheva A.D.

More about the authors

Journal: Russian Annals of Ophthalmology. 2019;135(3): 121‑127

Read: 2310 times


To cite this article:

Efendieva MKh, Budzinskaia MV, Kadyshev VV, Zinchenko RA, Savochkina OA, Pupysheva AD. Molecular and genetic aspects of age-related macular degeneration and glaucoma (in Russian only). Russian Annals of Ophthalmology. 2019;135(3):121‑127. (In Russ.)
https://doi.org/10.17116/oftalma2019135031121

Recommended articles:
Pharmacogenetic testing for personalized statin prescription in Moscow. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):49-55
Neuroprotective therapy for age-related macu­lar dege­neration. Russian Annals of Ophthalmology. 2024;(6):152-158
Neuroprotective therapy of glaucoma. Russian Annals of Ophthalmology. 2025;(1):83-90
Reha­bilitation of patients with post-COVID syndrome depe­nding on C(159)T poly­morphism of SD-14 gene. Problems of Balneology, Physiotherapy and Exercise Therapy. 2025;(1):42-50

References:

  1. Libman ES, Shahova EV. Blindness and disability due to pathology of the organ of vision in Russia. Vestnik oftal`mologii. 2006;1:35-37. (In Russ.)
  2. Libman ES, Chumaeva EA. Comprehensive assessment of the prevalence of glaucoma. Mediko-sotsial’naya ekspertiza i reabilitatsia. 2000;2:24-26. (In Russ.)
  3. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health Portal. 2014;2:106-116. https://doi.org/10.1016/s2214-109x(13)70145-1
  4. Smith W, Assink J, Klein R, Mitchell P, Klaver CC, Klein BE, et al. Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology. 2001;108:697-704. https://doi.org/10.1016/S01616420(00)00580-7
  5. Pascolini D, Mariotti S. Global estimates of visual impairment: 2010. British Journal of Ophthalmology. 2012;96(5):614-618. https://doi.org/10.1136/bjophthalmol-2011-300539
  6. Ermakova NA, Rabdanova OTs. Main etiologic factors and pathogenic mechanisms of the development of age-related macular dystrophy. Klinicheskaya Oftal’mologia. 2007;8(3):125-128. (In Russ.)
  7. Pascolini D, Mariotti SP, Pokharel GP, Pararajasegaram R, Etya’ale D, Négrel AD, Resnikoff, S. 2002 Global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiology. 2004;11(2):67-115. https://doi.org/10.1076/opep.11.2.67.28158
  8. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013
  9. Egorov EA, Astahov JuS, Erichev VP. Nacional’noe rukovodstvo po glaukome. [Glaukoma: natsional’oe rukovodstvo]. M.: GEOTAR-Media; 2015. (In Russ.)
  10. Moshetova LK. Retinal pathology in patients with primary open-angle glaucoma. RMJ Klinicheskaya Oftal’mologia. 2001;3:106-107. (In Russ.)
  11. Chakravarthy U, Wong TY, Fletcher A. Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis. BMC Ophthalmology. 2010;10:31. https://doi.org/10.1186/1471-2415-10-31
  12. Jonasson F, Fisher DE, Eiriksdottir G, Sigurdsson S. Five-year incidence, progression, and risk factors for age-related macular degeneration: the age, gene/environment susceptibility study. Ophthalmology. 2014;121(9):1766-1772. https://doi.org/10.1016/j.ophtha.2014.03.013
  13. Erke MG, Bertelsen G, Peto T, Sjølie AK, Lindekleiv H, Njølstad I. Cardiovascular risk factors associated with age-related macular degeneration: the Tromsø Study. Acta Ophthalmologica. 2014;92(7):662-669. https://doi.org/10.1111/aos.12346
  14. Blumberg D, Skaat A, Liebmann JM. Emerging risk factors for glaucoma onset and progression. Progress in Brain Research. 2015;221:81-101. https://doi.org/10.1016/bs.pbr.2015.04.007
  15. Warwick A, Lotery A. Genetics and genetic testing for age-related macular degeneration. Eye. 2018;32(5):849-857. https://doi.org/10.1038/eye.2017.245
  16. Budzinskaya MV, Pogoda TV, Generozov ÉV. Influence of genetic mutations on clinical presentation of subretinal neovascularization. Report 1: The impact of CFH and IL-8 genes polymorphism. Vestnik Oftal’mologii. 2011;127(4):3-8. (In Russ.)
  17. Black JR, Clark SJ. Age-related macular degeneration: genome-wide association studies to translation. Genetics in Medicine. 2016;18(4):283-289. https://doi.org/10.1038/gim.2015.70
  18. Ghanbari M, Iglesias AI, Springelkamp H, et al. A Genome-Wide Scan for MicroRNA-Related Genetic Variants Associated With Primary Open-Angle Glaucoma. International Glaucoma Genetics Consortium (IGGC). Investigative Ophthalmology and Visual Science. 2017;58(12):5368-5377. https://doi.org/10.1167/iovs.17-22410
  19. Saksens NT, Geerlings MJ, Bakker B, Schick T, Daha MR, Fauser S, et al. Rare genetic variants associated with development of age-related macular degeneration. JAMA Ophthalmol. 2016;134:287-293. https://doi.org/10.1001/jamaophthalmol.2015.5592
  20. Wagner EK, Raychaudhuri S, Villalonga MB et al. Mapping rare, deleterious mutations in factor H: association with early onset, drusen burden, and lower antigenic levels in familial AMD. Scientific Reports. 2016;6:31531. https://doi.org/10.1016/j.imbio.2016.06.178
  21. Ferrara D, Seddon JM. Phenotypic characterization of complement factor H R1210C rare genetic variant in age-related macular degeneration. JAMA Ophthalmology. 2015;133:785-791. https://doi.org/10.1001/jamaophthalmol.2015.0814
  22. Chikun (Woods) EA, Budzinskaya MV, Pogoda TV. The Effects of CFH, HTRA1 and IL-8 Genes Polymorphism on Clinical Picture of Choroid Neovascular Membrane. Annual Meeting Scientific Abstracts, ARVO 2011 Visionary Genomics, May 2011, Fort Lauderdale, Florida, USA.
  23. Klinicheskaya farmakokinetika: teoreticheskie, prikladnye i analiticheskie aspekty. Pod red. Kukesa V.G. M.: Izdatel’stvo GEOTAR-Media; 2009. (In Russ.)
  24. Ma MK, Woo MH, McLeod HL. Genetic basis of drug metabolism. Am J Health Syst Pharm. 2002;1;59(21):2061-2069.
  25. Preissner SC, Hoffmann MF, et al. Polymorphic Cytochrome P450 Enzymes (CYPs) and Their Role in Personalized Therapy. PLoS One. 2013;8(12):e82562. https://doi.org/10.1371/journal.pone.0082562
  26. Chen KK, Poth EJ. Racial differences as illustrated by the mydriatic action of cocaine, euphthalmine, and ephedrine. J Pharmacol Exp Ther. 1929;36:429-445.
  27. Salazar M, Shimada K, Patil PN. Iris pigmentation and atropine mydriasis. J Pharmacol Exp Ther. 1976;197:79-88.
  28. Salminen L, Imre G, Huupponen R. The effect of ocular pigmentation on intraocular pressure response to timolol. Acta Ophthalmol Suppl. 1985;173:15-18.
  29. Schwartz SG, Puckett BJ, Allen RC, Castillo IG, Leffler CT. β1-Adrenergic receptor polymorphisms and clinical efficacy of betaxolol hydrochloride in normal volunteers. Ophthalmology. 2005;112(12):2131-2136. https://doi.org/10.1016/j.ophtha.2005.08.014
  30. Sakurai M, Higashide T, Takahashi M, Sugiyama K. Association between genetic polymorphisms of the prostaglandin F2a receptor gene and response to latanoprost. Ophthalmology. 2007;114(6):1039-1045. https://doi.org/10.1016/j.ophtha.2007.03.025
  31. Ferrington DA, Kapphahn RJ, Leary MM et al. Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration. Exp Eye Res. 2016;145:269-277. https://doi.org/10.1016/j.exer.2016.01.018
  32. Ratnapriya R, Chew EY. Age-related macular degeneration-clinical review and genetics update. Clin Genet. 2013;84(2):160-166. https://doi.org/10.1111/cge.12206
  33. Camelo S. Potential Sources and Roles of Adaptive Immunity in Age-Related Macular Degeneration: Shall We Rename AMD into Autoimmune Macular Disease? Autoimmune Dis. 2014;532487. https://doi.org/10.1155/2014/532487
  34. Kawa MP, Machalinska A, et al. Complement system in pathogenesis of AMD: dual player in degeneration and protection of retinal tissue. J Immunol Res. 2014;483960. https://doi.org/10.1155/2014/483960
  35. Boiko EV, Churashov SV, Kamilova TA. Molecular genetic basis of age-related macular degeneration. Vestnik oftal’mologii. 2013;129(2):86-90. (In Russ.)
  36. Anderson DH, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Progress in Retinal and Eye Research. 2010;29(2):95-112. https://doi.org/10.1016/j.preteyeres.2009.11.003
  37. Cheng Y, Huang L, et al. Genetic and functional dissection of ARMS2 in age-related macular degeneration and polypoidal choroidal vasculopathy. Public Library of Science one. 2013;8(1):e53665. https://doi.org/10.1371/journal.pone.0053665
  38. Chirco KR, Tucker BA, et al. Selective accumulation of the complement membrane attack complex in aging choriocapillaris. Experimental Eye Research. 2016;146:393-397. https://doi.org/10.1016/j.exer.2015.09.003
  39. Xu H, Chen M. Targeting the complement system for the management of retinal inflammatory and degenerative diseases. European Journal of Pharmacology. 2016;2999(16):30112-30111. https://doi.org/10.1016/j.ejphar.2016.03.001
  40. Telander DG. Inflammation and age-related macular degeneration (AMD). 2011 Semin Ophthalmol. 2011;26(3):192-197. https://doi.org/10.3109/08820538.2011.570849
  41. Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics. 2016;48:134-143. https://doi.org/10.1038/ng.3448
  42. McHarg S, Clark SJ, Day AJ, Bishop PN. Age-related macular degeneration and the role of the complement system. Molecular Immunology. 2015;67(1):43-50. https://doi.org/10.1016/j.molimm.2015.02.032
  43. Johnson PT, Brown MN, Pulliam BC, et al. Synaptic pathology, altered gene expression, and degeneration in photoreceptors impacted by drusen. Investigative Ophthalmology and Visual Science. 2005;46(12):4788-4795. https://doi.org/10.1167/iovs.05-0767
  44. Altay L, Scholz P, et al. Association of Hyperreflective Foci Present in Early Forms of Age-Related Macular Degeneration With Known Age-Related Macular Degeneration Risk Polymorphisms. Investigative Ophthalmology and Visual Science. 2016;1;57(10):4315-4320. https://doi.org/10.1167/iovs.15-18855
  45. Hageman GS, Anderson DH, Johnson LV, et al. A common haplotype in the complement regulatory gene factor H (HF1_CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA. 2005;102:7227-7232.
  46. Cao S, Wang JC, et al. CFH Y402H polymorphism and the complement activation product C5a: effects on NF-κB activation and inflammasome gene regulation. British Journal of Ophthalmology. 2016;100(5):713-718. https://doi.org/10.1136/bjophthalmol-2015-307213
  47. Jabbarpoor Bonyadi MH, Yaseri M, et al. Association of Combined Complement Factor H Y402H and ARMS/LOC387715 A69S Polymorphisms with Age-related Macular Degeneration: A Meta-analysis. Current Eye Research. 2016;41(12):1519-1525. https://doi.org/10.3109/02713683.2016.1158274
  48. Tsilimbaris MK, Lopez-Galvez MI, Gallego-Pinazo R, et al. Epidemiological and clinical baseline characteristics as predictive biomarkers of response to anti-VEGF treatment in patients with neovascular AMD. Journal of Ophthalmology. 2016;2016:4367631. https://doi.org/10.1155/2016/4367631
  49. Riaz M, Lores-Motta L, Richardson AJ, et al. GWAS study using DNA pooling strategy identifies association of variant rs4910623in OR52B4 gene with anti-VEGF treatment response in age-related macular degeneration. Scientific Reports. 2016;6:37924. https://doi.org/10.1038/srep37924
  50. Fauser S, Lambrou GN. Genetic predictive biomarkers of anti-VEGF treatment response in patients with neovascular age-related macular degeneration. Survey of Ophthalmology. 2015;60:138-152. https://doi.org/10.1016/j.survophthal.2014.11.002
  51. Smailhodzic D, Muether PS, Chen J, et al. Cumulative effect of risk alleles in CFH, ARMS2, and VEGFA on the response to ranibizumab treatment in age-related macular degeneration. Ophthalmology. 2012;119(11):2304-2311. https://doi.org/10.1016/j.ophtha.2012.05.040
  52. Lotery AJ, Gibson J, Cree AJ, Downes SM, Harding SP, Rogers CA, et al. Pharmacogenetic associations with vascular endothelial growth factor inhibition in participants with neovascular age-related macular degeneration in the IVAN Study. Ophthalmology. 2013;120:2637-2643. https://doi.org/10.1016/j.ophtha.2013.07.046
  53. Hagstrom SA, Ying GS, Maguire MG, Martin DF, CATT Research Group, Gibson J, et al. VEGFR2 gene polymorphisms and response to anti-vascular endothelial growth factor therapy in age-related macular degeneration. Ophthalmology. 2015;122:1563-1568. https://doi.org/10.1016/j.ophtha.2015.04.024
  54. Hong N, Shen Y, Yu CY, Wang SQ, Tong JP. Association of the polymorphism Y402H in the CFH gene with response to anti-VEGF treatment in age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmologica. 2016;94:334-345. https://doi.org/10.1111/aos.13049
  55. Hu Z, Xie P, Ding Y, Yuan D, Liu Q. Association between variants A69S in ARMS2 gene and response to treatment of exudative AMD: a meta-analysis. British Journal of Ophthalmology. 2015;99:593-598. https://doi.org/10.1136/bjophthalmol-2014-305488
  56. Wu M, Xiong H, Xu Y, et al. Association between VEGF-A and VEGFR-2 polymorphisms and response to treatment of neovascular AMD with anti-VEGF agents: a meta-analysis. British Journal of Ophthalmology. 2017;101:976-984. https://doi.org/10.1136/bjophthalmol-2016-309418
  57. Yu Tong, Jing Liao, Yuan Zhang, et al. LOC387715/HTRA1 gene polymorphisms and susceptibility to age-related macular degeneration: A HuGE review and meta-analysis. Molecular Vision. 2010;16:1958-1981. https://doi.org/10.17116/oftalma201613228-13
  58. Hautamäki A, Seitsonen S, Holopainen JM, et al. The genetic variant rs4073 A→T of the Interleukin‐8 promoter region is associated with the earlier onset of exudative age‐related macular degeneration. Acta Ophthalmologica. 2015;93(8):726-733. https://doi.org/10.1111/aos.12799
  59. Kirilenko MYu. Studying the association between genetic polymorphism of growth factors and the development of primary open-angle glaucoma. Vestnik oftal’mologii. 2017;133(3):9-15. (In Russ.) https://doi.org/10.17116/oftalma201713339-15
  60. Lechner J, Mei Chen, Ruth E, Hogg, et al. Higher plasma levels of complement C3a, C4a and C5a increase the risk of subretinal fibrosis in neovascular age-related macular degeneration. Immunology and Ageing. 2016;13:4. https://doi.org/10.1186/s12979-016-0060-5

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.