The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Karaulov A.V.

GBOU VPO Pervyĭ MGMU im. I.M. Sechenova

Kalyuzhin O.V.

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russia, Moscow, Russia

Immunotherapy for infectious diseases: challenges and prospects

Authors:

Karaulov A.V., Kalyuzhin O.V.

More about the authors

Journal: Therapeutic Archive. 2013;85(11): 100‑108

Read: 3260 times


To cite this article:

Karaulov AV, Kalyuzhin OV, Karaulov AV, Kalyuzhin OV. Immunotherapy for infectious diseases: challenges and prospects. Therapeutic Archive. 2013;85(11):100‑108. (In Russ.)

Recommended articles:
Claudin-18.2 and gastric cancer: from physiology to carcinogenesis. Russian Journal of Archive of Pathology. 2024;(6):92-99
Influence of griseofulvin on inte­stinal microbiota in the treatment of microsporia in rural children. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(2):185-190

References:

  1. Treating infectious diseases in a microbial world: Report of two workshops on novel antimicrobial therapeutics. Washington: National Academies Press; 2006.
  2. Karaulov A.V., Kalyuzhin O.V. Immunotropnye preparaty: printsipy primeneniya i klinicheskaya effektivnost'. M.: MTsFER; 2007.
  3. Karaulov A.V., Sokurenko S.I., Kalyuzhin O.V., Evsegneeva I.V. Napravlennaya regulyatsiya immunnykh reaktsii v profilaktike i lechenii zabolevanii cheloveka. Immunopatologiya, allergologiya, infektologiya 2000; 1: 7-13.
  4. Sil'vestrov V.P., Karaulov A.V. Antibakterial'naya i immunomoduliruyushchaya terapiya zabolevanii organov dykhaniya. Ter arkh 1983; 3: 3-9.
  5. Janeway C., Travers P., Walport M., Shlomchik M. Immunobiology: The Immune System in Health and Disease, 5th ed. New York: Garland Publishing; 2001.
  6. Casadevall A., Pirofski L.-A. The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 2003; 1: 17-24.
  7. Correa R.G., Milutinovic S., Reed J.C. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases. Biosci Rep 2012; 32: 597-608.
  8. Bellanti F., Vendemiale G., Altomare E., Serviddio G. The impact of interferon lambda 3 gene polymorphism on natural course and treatment of hepatitis C. Clin Dev Immunol 2012; 2012: Art 849373. doi: 10.1155/2012/849373.
  9. Kalyuzhin O.V. Vozmozhnosti ispol'zovaniya probiotikov dlya ukrepleniya protivoinfektsionnoi zashchity v svete immunogomeostaticheskoi roli mikrobioty. Effektivnaya farmakoterapiya: Allergologiya i immunologiya 2013; 2 (27/2013): 12-25.
  10. Couturier-Maillard A., Secher T., Rehman A. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 2013; 123 (2): 700-711. doi: 10.1172/JCI62236.
  11. Biswas A., Petnicki-Ocwieja T., Kobayashi K.S. Nod2: a key regulator linking microbiota to intestinal mucosal immunity. J Mol Med (Berl) 2012; 90 (1): 15-24. doi: 10.1007/s00109-011-0802-y.
  12. Hirota S.A., Ng J., Lueng A. The NLRP3 inflammasome plays key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis 2011; 17 (6): 1359-1372. doi:10.1002/ibd.21478.
  13. Kalyuzhin O.V. Probiotiki kak sovremennye sredstva ukrepleniya protivoinfektsionnoi zashchity: mif ili real'nost'? Russ med zhurn 2012; 28: 1395-1401.
  14. Penders J., Stobberingh E.E., Savelkoul P.H.M., Wolffs P.F.G. The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 2013; 4: Art 87. doi: 10.3389/fmicb.2013.00087.
  15. Tayal V., Kalra B.S. Cytokines and anti-cytokines as therapeutics - An update. Eur J Pharmacol 2008; 579 (1-3): 1-12. doi: 10.1016/j.ejphar.2007.10.049.
  16. Asselah T., Marcellin P. Interferon free therapy with direct acting antivirals for HCV. Liver Int 2013; 33 (Suppl 1): 93-104. doi: 10.1111/liv.12076.
  17. Clark V.C., Peter J.A., Nelson D.R. New therapeutic strategies in HCV: second-generation protease inhibitors. Liver Int. 2013; 33 (Suppl 1): 80-84. doi: 10.1111/liv.12061.
  18. Donnelly R.P., Dickensheets H., O'Brien T.R. Interferon-lambda and therapy for chronic hepatitis C virus infection. Trends Immunol 2011; 32 (9): 443-450. doi: 10.1016/j.it.2011.07.002.
  19. Decker W.K., Safdar A. Cytokine adjuvants for vaccine therapy of neoplastic and infectious disease. Cytokine Growth Factor Rev 2011; 22: 177-187. doi: 10.1016/j.cytogfr.2011.07.001.
  20. Medunitsyn N.V., Pokrovskii V.I. Osnovy immunoprofilaktiki i immunoterapii infektsionnykh boleznei. M.: GEOTAR-Media; 2005.
  21. Buchwald U.K., Pirofski L. Immune therapy for infectious diseases at the dawn of the 21st century: the past, present and future role of antibody therapy, therapeutic vaccination and biological response modifiers. Curr Pharm Des 2003; 9: 945-968.
  22. Casadevall A. Passive antibody therapies: progress and continuing challenges. Clin Immunol 1999; 93 (1): 5-15.
  23. Saylor C., Dadachova E., Casadevall A. Monoclonal antibody-based therapies for microbial diseases. Vaccine 2009; 27(Suppl 6): G38-G46. doi: 10.1016/j.vaccine.2009.09.105.
  24. Reichert J.M. Marketed therapeutic antibodies compendium. MAbs 2012; 4: 413-415.
  25. Casadevall A., Pirofski L.-A. A new synthesis for antibody-mediated immunity. Nat Immunol 2012; 13 (1): 21-28. doi: 10.1038/ni.2184.
  26. Flego M., Ascione A., Cianfriglia M., Vella S. Clinical development of monoclonal antibody based drugs in HIV and HCV diseases. BMC Medicine 2013; 11: Art 4. http://www.biomedcentral.com/1741-7015/11/4.
  27. Chow S.-K., Casadevall A. Monoclonal antibodies and toxins - a perspective on function and isotype. Toxins 2012; 4: 430-454. doi: 10.3390/toxins4060430.
  28. Rueckert C., Guzma´n C.A. Vaccines: from empirical development to rational design. PLoS Pathog 2012; 8 (11): Art e1003001. doi: 10.1371/journal.ppat.1003001.
  29. Ferraro B., Morrow M.P., Hutnick N.A. et al. Clinical applications of DNA vaccines: current progress. Clin Infect Dis 2011; 53(3): 296-302. doi: 10.1093/cid/cir334.
  30. Bagarazzi M.L., Yan J., Morrow M.P. et al. Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med 2012; 4 (155): Art 155ra138. doi: 10.1126/scitranslmed.3004414.
  31. Robinson J.A. Max Bergmann lecture Protein epitope mimetics in the age of structural vaccinology. J Pept Sci 2013; 19: 127-140. doi: 10.1002/psc.2482.
  32. Dormitzer P.R., Grandi G., Rappuoli R. Structural vaccinology starts to deliver. Nat Rev Microbiol 2012; 10: 807-813.
  33. Sayers S., Ulysse G., Xiang Z., He Y. Vaxjo: A web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development. J Biomed Biotechnol 2012; 2012: Art 831486. doi: 10.1155/2012/831486.
  34. Steinhagen F., Kinjo T., Bode C., Klinman D.M. TLR-based immune adjuvants. Vaccine 2010; 29: 3341-3355.
  35. Chuai X., Chen H., Wang W. et al. Poly(I:C)/Alum mixed adjuvant priming enhances HBV subunit vaccine-induced immunity in mice when combined with recombinant adenoviral-based HBV vaccine boosting. PLoS ONE 2013; 8 (1): Art e54126. doi: 10.1371/journal.pone.0054126.
  36. Yoo Y.C., Yoshimatsu K., Koike Y. et al. Adjuvant activity of muramyl dipeptide derivatives to enhance immunogenicity of a hantavirus-inactivated vaccine. Vaccine 1998; 16 (2-3): 216-24.
  37. Ellouz F., Adam A., Ciobaru R., Lederer E. Minimal strustural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun 1974; 59: 1317-1325.
  38. Gregory A.E., Titball R., Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013; 3: Art 13. doi: 10.3389/fcimb.2013.00013.
  39. Kamphuis T., Meijerhof T., Stegmann T. et al. Immunogenicity and protective capacity of a virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice. PLoS One 2012; 7 (5): Art e36812. doi: 10.1371/journal.pone.0036812.
  40. Stegmann T., Kamphuis T., Meijerhof T. et al. Lipopeptide-adjuvanted respiratory syncytial virus virosomes: A safe and immunogenic non-replicating vaccine formulation. Vaccine 2010; 28: 5543-5550. doi: 10.1016/j.vaccine.2010.06.041.
  41. Shafique M., Wilschut J., de Haan A. Induction of mucosal and systemic immunity against respiratory syncytial virus by inactivated virus supplemented with TLR9 and NOD2 ligands. Vaccine 2012; 30: 597-606.
  42. Fujkuyama Y., Tokuhara D., Kataoka K. et al. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev Vaccines 2012; 11 (3): 367-379. doi:10.1586/erv.11.196.
  43. Zaman M., Chandrudu S., Toth I. Strategies for intranasal delivery of vaccines. Drug Deliv Transl Res 2013; 3: 100-109. doi: 10.1007/s13346-012-0085-z.
  44. Shafique M., Meijerhof T., Wilschut J., de Haan A. Evaluation of an intranasal virosomal vaccine against respiratory syncytial virus in mice: effect of TLR2 and NOD2 ligands on induction of systemic and mucosal immune responses. PLoS One 2013; 8 (4): Art e61287. doi: 10.1371/journal.pone.0061287.
  45. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464 (7285): 59-65. doi: 10.1038/nature08821.
  46. Smith P.M., Garrett W.S. The gut microbiota and mucosal T cells. Front Microbiol 2011; 2: Art 111. doi: 10.3389/fmicb.2011.00111
  47. Taverniti V., Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 2011; 6 (3): 261-274. doi: 10.1007/s12263-011-0218-x.
  48. Cong Y., Feng T., Fujihashi K. et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci USA 2009; 106 (46): 19256-19261. doi:10.1073/pnas.0812681106.
  49. Shinkai K., McCalmont T.H., Leslie K.S. Cryopyrin-associated periodic syndromes and autoinflammation. Clin Exp Dermatol 2008; 33: 1-9.
  50. Beutler B.A. TLRs and innate immunity. Blood 2009; 113: 1399-1407.
  51. Gee M.L., Burton M., Grevis-James A. Imaging the action of antimicrobial peptides on living bacterial cells. Sci Rep 2013; 3: Art 1557. doi: 10.1038/srep01557.
  52. Mangoni M.L. Host-defense peptides: from biology to therapeutic strategies. Cell Mol Life Sci 2011; 68 (13): 2157-2159.
  53. Kang S.J., Kim D.H., Mishig-Ochir T., Lee B.J. Antimicrobial peptides: their physicochemical properties and therapeutic application. Arch Pharm Res 2012; 35 (3): 409-413.
  54. Scorciapino M.A., Rinaldi A.C. Antimicrobial peptidomimetics: reinterpreting nature to deliver innovative therapeutics. Front Immunol 2012; 3: Art 171. doi: 10.3389/fimmu.2012.00171.
  55. Andronova T.M., Pinegin B.V. Muramildipeptidy - immunotropnye lekarstvennye sredstva novogo pokoleniya. Venerolog 2006; 6: 11-15.
  56. Kalyuzhin O.V. Proizvodnye muramildipeptida v eksperimente i klinike. Zhurn mikrobiol 1998; 1: 104-108.
  57. Pinegin B.V., Andronova T.M., Karsonova M.I. Preparaty muramildipeptidovogo ryada - immunotropnye lekarstvennye sredstva novogo pokoleniya. Int J Immunorehabilitation 1997; 6: 27-34.
  58. Polovkina V.S., Markov E.Yu. Immunoad''yuvantnye svoistva muramildipeptida. Byulleten' VSNTs SO RAMN 2012; 1 (83): 149-153.
  59. Bahr G.M., Chedid L. Immunological activities of muramyl peptides. Federat Proc 1986; 45 (11): 2541-2544.
  60. Kotani S., Azuma I., Tacada H. et al. Muramyl dipeptides: prospect for cancer treatment and immunostimulation. In: Klein T., Specter S., Freldman H., Szentlvanyl A., eds. Biological response modifiers in human oncology and immunology. N.Y.: Plenum; 1983, 117-158.
  61. Kotani S., Tsujimoto M., Koga T. et al. Chemical structure and biological activity relationship of bacterial cell walls and muramyl peptides. Federat Proc 1986; 45 (11): 2534-2540.
  62. Ogawa C., Liu Y.-J., Kobayashi K.S. Muramyl dipeptide and its derivatives: peptide adjuvant in immunological disorders and cancer therapy. Curr Bioact Compd 2011; 7 (3): 180-197. doi: 10.2174/157340711796817913.
  63. Adam A., Lederer E. Muramyl peptides: immunomodulators, sleep factors, and vitamins. In: Stevens D.G., ed. Medical research reviews. Vol. 4. N.Y.: Wiley and Sons; 1984, 111-152.
  64. Windheim M., Lang C., Peggie M. et al. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J 2007; 404 (Pt 2): 179-190. doi: 10.1042/BJ20061704.
  65. Chang Foreman H.-C., Van Scoy S., Cheng T.-F., Reich N.C. Activation of interferon regulatory factor 5 by site specific phosphorylation. PLoS ONE 2012; 7 (3): Art e33098. doi:10.1371/journal.pone.0033098.
  66. Girardin S.E., Boneca I.G., Carneiro L.A. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 2003; 300 (5625): 1584-1587.
  67. Fitzgerald K.A. NLR-containing inflammasomes: Central mediators of host defense and inflammation. Eur J Immunol 2010; 40 (3): 595-598. doi: 10.1002/eji.201040331.
  68. Hsu L.-C., Ali S.R., McGillivray S. et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1Β secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 2008; 105 (22): 7803-7808.
  69. Cooney R., Baker J., Brain O. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010; 16: 90-97.
  70. Travassos L.H., Carneiro L.A., Ramjeet M. et al. NOD1 and NOD2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11: 55-62.
  71. Kalyuzhin O.V. Immunomoduliruyushchaya aktivnost' glikozidnykh proizvodnykh N-atsetilmuramil-L-alanil-D-izoglut­amina. Vestn nov med tekhnol 2003; 1-2: 28-32.
  72. Karaulov A.V., Kalyuzhin O.V., Zemlyakov A.E. Biologicheskaya aktivnost' glikozidnykh proizvodnykh N-atsetilmuramil-L-alanil-D-izoglutamina. Ross bioter zhurn 2002; 1: 14-24.
  73. Andronova T.M., Pinegin B.V., Kozlov I.G. Likopid (GMDP) - sovremennye predstavleniya. 5-e izd., dop. i pererab. M.; 2009.
  74. Ivanov V.T., Andronova T.M., Nesmeyanov V.A. i dr. Mekhanizm deistviya i klinicheskaya effektivnost' immunomodulyatora glyukozaminilmuramil dipeptida (likopida). Klin med 1997; 3: 11-15.
  75. Zemlyakov A.E., Tsikalov V.V., Kalyuzhin O.V i dr. Glikozidy N-atsetilmuramil-L-alanil-D-izoglutamina. Vliyanie kon­figuratsii glikozidnogo tsentra i prirody aglikona na biologicheskuyu aktivnost'. Bioorgan khim 2003; 3: 316-322.
  76. Kalyuzhin O.V., Fuks B.B. Vliyanie gidro-lipofil'nogo balansa proizvodnykh muramildipeptida na ikh vzaimodeistvie s biomembranami i vklyuchenie v kletki. Byul eksper biol med 1996; 12: 658-661.
  77. Kalyuzhin O.V., Fuks B.B., Bovin N.V. i dr. Immunomoduliruyushchaya aktivnost' novykh proizvodnykh muramildipeptida in vitro. Byul eksper biol med 1994; 5: 510-513.
  78. Kalyuzhin O.V., Zemlyakov A.E., Fuchs B.B. Distinctive immunomodulating properties and interactivity with model membranes and cells of two homologous muramyl dipeptide derivatives. Int J Immunopharmacol 1996; 18 (11): 651-659.
  79. Tur'yanov M.Kh., Kalyuzhin O.V., Nelyubov M.V. i dr. Kompleksnaya protivovirusnaya terapiya gepatita S. Uchebno-metodicheskaya razrabotka. M.: RMAPO; 2004.
  80. Pashchenkov M.V., Budikhina A.S., Golubleva N.M. Rezul'taty II/III fazy klinicheskikh ispytanii immunomodulyatora polimuramil pri gnoinoi infektsii. Immunologiya 2012; 4: 199-203.
  81. Pashchenkov M.V., Popilyuk S.F., Alkhazova B.I. i dr. Vliyanie muropeptidov, soderzhashchikh ostatok mezodiaminopimelinovoi kisloty, na makrofagi i dendritnye kletki cheloveka. Tsitokiny i vospalenie 2012; 1: 33-41.
  82. Zidek Z., Masek K., Sedivy F. Anti-inflammatory effects of muramyl dipeptide in experimental models of acute inflammation. Agents Actions 1984; 14: 72-75.
  83. Zunic M., Bahr G.M., Mudde G.C. et al. MDP(Lysyl)GDP, a nontoxic muramyl dipeptide derivative, inhibits cytokine production by activated macrophages and protects mice from phorbol ester- and oxazolone-induced inflammation. J Invest Dermatol 1998; 111 (1): 77-82.
  84. Wardowska A., Dzierzbicka K., Szaryńska M. et al. Analogues of muramyl dipeptide (MDP) and tuftsin limit infection and inflammation in murine model of sepsis. Vaccine 2009; 27 (3): 369-374. doi: 10.1016/j.vaccine.2008.11.017.
  85. Lee K.-H., Liu Y.-J., Biswas A. et al. A novel aminosaccharide compound blocks immune responses by Toll-like receptors and nucleotide-binding domain, leucine-rich repeat proteins. J Biol Chem 2011; 286 (7): 5727-5735.
  86. Mikhailova L.P., Makarova O.V., Kalyuzhin O.V. i dr. Vliyanie glimurida na produktsiyu tsitokinov splenotsitami myshei S57VL/6 i VALB/c. Immunologiya 2004; 3: 152-154.
  87. Ponezheva Zh.B., Obernikhin S.S., Danilova I.G., Kalyuzhin O.V. Dinamika morfologicheskikh i immunologicheskikh proyavlenii Kon A-indutsirovannogo gepatita u myshei Balb/c pri profilakticheskom i lechebnom vvedenii glimurida. Vestn ural med akadem nauki 2010; 2 (30): 108-109.
  88. Ponezheva Zh.B., Obernikhin S.S., Kalyuzhin O.V., Karaulov A.V. Vliyanie Β-geptilglikozida muramildipeptida na al'terativnye izmeneniya pecheni i proliferatsiyu splenotsitov i timotsitov myshei s gepatitom, indutsirovannym konkanavalinom A. Ros immunol zhurn 2010; 3: 243-247.
  89. Coulombe F., Fiola S., Akira S. et al. Muramyl dipeptide induces NOD2-dependent Ly6C(high) monocyte recruitment to the lungs and protects against influenza virus infection. PLoS One 2012; 7 (5): Art e36734. doi: 10.1371/journal.pone.0036734.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.