The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Zhirov A.M.

Stavropol Plague Control Research Institute

Kovalev D.A.

Stavropol Plague Control Research Institute

Kurcheva S.A.

Stavropol Plague Control Research Institute

Ponomarenko D.G.

Stavropol Plague Control Research Institute

Kulichenko A.N.

Stavropol Plague Control Research Institute

CPG oligonucleotides as vaccine adjuvants for prevention of infectious diseases

Authors:

Zhirov A.M., Kovalev D.A., Kurcheva S.A., Ponomarenko D.G., Kulichenko A.N.

More about the authors

Read: 1156 times


To cite this article:

Zhirov AM, Kovalev DA, Kurcheva SA, Ponomarenko DG, Kulichenko AN. CPG oligonucleotides as vaccine adjuvants for prevention of infectious diseases. Molecular Genetics, Microbiology and Virology. 2024;42(3):3‑11. (In Russ.)
https://doi.org/10.17116/molgen2024420313

Recommended articles:
Evaluation of the immu­nogenecity of a complex of reco­mbinant Brucella proteins in vitro. Mole­cular Gene­tics, Microbiology and Viro­logy. 2024;(4):30-36
The type 1 diabetes mellitus treatment. Russian Journal of Preventive Medi­cine. 2025;(8):131-137

References:

  1. Paul W.E. Fundamental immunology. 7th ed, Lippincott Williams & Wilkins; 2012.
  2. Akira S., Uematsu S., Takeuchi O. Pathogen Recognition and Innate Immunity. Cell. 2006;124(4):783-801.  https://doi.org/10.1016/j.cell.2006.02.015
  3. Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Advances in immunology. 1999;73:329-368.  https://doi.org/10.1016/s0065-2776(08)60790-7
  4. Barton G.M., Kagan J.C., Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nature immunology. 2006;7(1):49-56.  https://doi.org/10.1038/ni1280
  5. Iwasaki A., Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nature immunology. 2004;5(10):987-995.  https://doi.org/10.1038/ni1112
  6. Ewald S.E., Engel A., Lee J., Wang M., Bogyo M., Barton G.M. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. Journal of Experimental Medicine. 2011;208(4):643-651.  https://doi.org/10.1084/jem.20100682
  7. Hartmann G., Weeratna R.D., Ballas Z.K., Payette P., Blackwell S., Suparto I. et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. The Journal of Immunology. 2000;164(3):1617-1624. https://doi.org/10.4049/jimmunol.164.3.1617
  8. Eckl-Dorna J., Batista F.D. BCR-mediated uptake of antigen linked to TLR9 ligand stimulates B-cell proliferation and antigen-specific plasma cell formation. Blood, The Journal of the American Society of Hematology. 2009;113(17):3969-3977. https://doi.org/10.1182/blood-2008-10-185421
  9. Klaschik S., Tross D., Klinman D.M. Inductive and suppressive networks regulate TLR9-dependent gene expression in vivo. Journal of leukocyte biology. 2009;85(5):788-795.  https://doi.org/10.1189/jlb.1008671
  10. Klaschik S., Tross D., Shirota H., Klinman D.M. Short and long-term changes in gene expression mediated by the activation of TLR9. Molecular immunology. 2010;47;(6):1317-1324. https://doi.org/10.1016/j.molimm.2009.11.014
  11. Kuwajima S., Sato T., Ishida K., Tada H., Tezuka H., Ohteki T. Interleukin 15-dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nature immunology. 2006;7(7):740-746.  https://doi.org/10.1038/ni1348
  12. Verthelyi D., Ishii K.J., Gursel M., Takeshita F., Klinman D.M. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. The Journal of Immunology. 2001;166(4):2372-2377. https://doi.org/10.4049/jimmunol.166.4.2372
  13. Krug A., Rothenfusser S., Hornung V., Jahrsdörfer B., Blackwell S., Ballas Z.K. et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. European journal of immunology. 2001;31(7):2154-2163. https://doi.org/10.1002/1521-4141(200107)31:7<2154::AID-IMMU2154>3.0.CO;2-U
  14. Speiser D.E., Schwarz K., Baumgaertner P., Manolova V., Devevre E., Sterry W. et al. Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients. Journal of Immunotherapy. 2010;33(8):848-858.  https://doi.org/10.1097/cji.0b013e3181f1d614
  15. Golenkina E.A., Galkina S.I., Viryasova G.M., Sud’ina G.F. The Pro-Oxidant Effect of Class A CpG ODNs on Human Neutrophils Includes Both Non-Specific Stimulation of ROS Production and Structurally Determined Induction of NO Synthesis. Oxygen. 2023;3:20-31.  https://doi.org/10.3390/oxygen3010002
  16. Marshall J.D., Fearon K., Abbate C., Subramanian S., Yee P., Gregorio J. et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. Journal of leukocyte biology. 2003;73(6):781-792.  https://doi.org/10.1189/jlb.1202630
  17. Guiducci C., Ott G., Chan J.H., Damon E., Calacsan C., Matray T. et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. The Journal of experimental medicine. 2006;203(8):1999-2008. https://doi.org/10.1084/jem.20060401
  18. Samulowitz U., Weber M., Weeratna R., Uhlmann E., Noll B., Krieg A.M., Vollmer J. A Novel Class of Immune-Stimulatory CpG Oligodeoxynucleotides Unifies High Potency in Type I Interferon Induction with Preferred Structural Properties. Oligonucleotides. 2010;20(2):93-101.  https://doi.org/10.1089/oli.2009.0210
  19. Hao F., Ma Y., Guan Y. Effects of Central Loop Length and Metal Ions on the Thermal Stability of G-Quadruplexes. Molecules. 2019;24(10):1863. https://doi.org/10.3390/molecules24101863
  20. Lee S.W., Song M.K., Baek K.H., Park Y., Kim J.K., Lee C.H. et al. Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials. The Journal of Immunology. 2000;165(7):3631-3631. https://doi.org/10.4049/jimmunol.165.7.3631
  21. Lipford G.B., Bendigs S., Heeg K., Wagner H. Poly-guanosine motifs costimulate antigen-reactive CD8 T cells while bacterial CpG-DNA affect T-cell activation via antigen-presenting cell-derived cytokines. Immunology. 2000;101(1):46-52.  https://doi.org/10.1046/j.1365-2567.2000.00077.x
  22. Nishikawa M., Matono M., Rattanakiat S., Matsuoka N., Takakura Y. Enhanced immunostimulatory activity of oligodeoxynucleotides by Y-shape formation. Immunology. 2008;124(2):247-255.  https://doi.org/10.1111/j.1365-2567.2007.02762.x
  23. Meng W., Yamazaki T., Nishida Y., Hanagata N. Nuclease-resistant immunostimulatory phosphodiester CpG oligodeoxynucleotides as human Toll-like receptor 9 agonists. BMC Biotechnology. 2011;11(1):88.  https://doi.org/10.1186/1472-6750-11-88
  24. Polovinkina V.S., Markov E.Yu. Structure and immune adjuvant properties of CPG-D. Medical Immunology (Russia). 2010;12(6):469-476. (In Russ.). https://doi.org/10.15789/1563-0625-2010-6-469-476
  25. Besednova N.N., Makarenkova I.D., Fedyanina L.N., Avdeeva Zh.I., Kryzshanovsky S.P., Kuznetsova T.A., Zaporozhets T.S. Prokaryotic and Eukaryotic DNA in Prevention and Treatment of Infectious Diseases. Antibiotics and Chemotherapy. 2018;63(5-6):52-67. (In Russ.).
  26. Semakova A.P., Mikshis N.I. Adjuvant Technologies in the Construction of Advanced Vaccines. Problems of Particularly Dangerous Infections. 2016;(2):28-35. (In Russ.). https://doi.org/10.21055/0370-1069-2016-2-28-35
  27. Mendez S., Tabbara K., Belkaid Y., Bertholet S., Verthelyi D., Klinman D. et al. Coinjection with CpG-Containing Immunostimulatory Oligodeoxynucleotides Reduces the Pathogenicity of a Live Vaccine against Cutaneous Leishmaniasis but Maintains Its Potency and Durability. Infection and immunity. 2003;71(9):5121-5129. https://doi.org/10.1128/iai.71.9.5121-5129.2003
  28. Klinman D.M., Currie D., Lee G., Grippe V., Merkel T. Systemic but not mucosal immunity induced by AVA prevents inhalational anthrax. Microbes and infection. 2007;9(12-13):1478-1483. https://doi.org/10.1016/j.micinf.2007.08.002
  29. Kudriavtseva O.M., Semakova A.P., Mikshis N.I., Popova P.Yu., Kozhevnikov V.A., Stepanov A.V., Bugorkova S.A. Immunological Efficiency and Safety of Synthesized CpG Oligodeoxynucleotides. Biotechnology. 2018;34(1):35-41. (In Russ.). https://doi.org/10.21519/0234-2758-2018-34-1-35-44
  30. Mikshis N.I., Semakova A.P., Popova P.Yu., Kudryavtseva O.M., Bugorkova S.A., Komissarov A.V., et al. Compliance of anthrax recombinant vaccine prototype with the requirements to immune biological preparations. Russian Journal of Infection and Immunity. 2018;8(3):388-392. (In Russ.). https://doi.org/10.15789/2220-7619-2018-3-388-392
  31. Tengvall S., Lundqvist A., Eisenberg R.J., Cohen G.H., Harandi A.M. Mucosal administration of CpG oligodeoxynucleotide elicits strong CC and CXC chemokine responses in the vagina and serves as a potent Th1-tilting adjuvant for recombinant gD2 protein vaccination against genital herpes. Journal of virology. 2006;80(11):5283-5291. https://doi.org/10.1128/jvi.02013-05
  32. Gallichan W.S., Woolstencroft R.N., Guarasci T., McCluskie M.J., Davis H.L., Rosenthal K.L. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. The Journal of Immunology. 2001;166(5):3451-3457. https://doi.org/10.4049/jimmunol.166.5.3451
  33. Nesburn A.B., Ramos T.V., Zhu X., Asgarzadeh H., Nguyen V., BenMohamed L. Local and systemic B cell and Th1 responses induced following ocular mucosal delivery of multiple epitopes of herpes simplex virus type 1 glycoprotein D together with cytosine-phosphate-guanine adjuvant. Vaccine. 2005;23(7):873-883.  https://doi.org/10.1016/j.vaccine.2004.08.019
  34. Mapletoft J.W., Oumouna M., Townsend H.G., Gomis S., Babiuk L.A., evan Drunen Littel-van den Hurk S. Formulation with CpG oligodeoxynucleotides increases cellular immunity and protection induced by vaccination of calves with formalin-inactivated bovine respiratory syncytial virus. Virology. 2006;353(2):316-323.  https://doi.org/10.1016/j.virol.2006.06.001
  35. Linghua Z., Xingshan T., Fengzhen Z. In vivo oral administration effects of various oligodeoxynucleotides containing synthetic immunostimulatory motifs in the immune response to pseudorabies attenuated virus vaccine in newborn piglets. Vaccine. 2008;26(2):224-233.  https://doi.org/10.1016/j.vaccine.2007.10.058
  36. Linghua Z., Xingshan T., Fengzhen Z. Vaccination with Newcastle disease vaccine and CpG oligodeoxynucleotides induces specific immunity and protection against Newcastle disease virus in SPF chicken. Veterinary immunology and immunopathology. 2007;115(3-4):216-222.  https://doi.org/10.1016/j.vetimm.2006.10.017
  37. Verthelyi D., Wang V.W., Lifson J.D., Klinman D.M. CpG oligodeoxynucleotides improve the response to hepatitis B immunization in healthy and SIV-infected rhesus macaques. Aids. 2004;18(7):1003-1008. https://doi.org/10.1097/00002030-200404300-00007
  38. Millan C.L.B., Weeratna R., Krieg A.M., Siegrist C.-A., Davis H.L. CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proceedings of the National Academy of Sciences. 1998;95(26):15553-15558. https://doi.org/10.1073/pnas.95.26.15553
  39. Cooper C., Davis H., Morris M., Efler S., Adhami M., Krieg A. et al. CpG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. Journal of clinical immunology. 2004:24(6):693-701.  https://doi.org/10.1007/s10875-004-6244-3
  40. Halperin S.A., Van Nest G., Smith B., Abtahi S., Whiley H., Eiden J.J. A phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine. 2003:21(19-20):2461-2467. https://doi.org/10.1016/s0264-410x(03)00045-8
  41. Rynkiewicz D., Rathkopf M., Sim I., Waytes A.T., Hopkins R.J., Giri L., et al. Marked enhancement of the immune response to BioThrax® (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers. Vaccine. 2011;29(37):6313-6320. https://doi.org/10.1016/j.vaccine.2011.05.047
  42. Cooper C., Davis H., Morris M., Efler S., Krieg A., Li Y. et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine. 2004;22(23-24):3136-3143. https://doi.org/10.1016/j.vaccine.2004.01.058
  43. Ioannou X.P., Gomis S.M., Karvonen B., Hecker R., Babiuk L., van Drunen Littel-van den Hurk S. CpG-containing oligodeoxynucleotides, in combination with conventional adjuvants, enhance the magnitude and change the bias of the immune responses to a herpesvirus glycoprotein. Vaccine. 2002;21(1-2):127-137.  https://doi.org/10.1016/s0264-410x(02)00378-x
  44. Kumar S., Jones T.R., Oakley M.S., Zheng H., Kuppusamy S.P., Taye A., et al. CpG Oligodeoxynucleotide and Montanide ISA 51 Adjuvant Combination Enhanced the Protective Efficacy of a Subunit Malaria Vaccine. Infection and Immunity. 2004;72(2):949-957.  https://doi.org/10.1128/iai.72.2.949-957.2004
  45. Nashar T.O., Amin T., Marcello A., Hirst T.R. Current progress in the development of the B subunits of cholera toxin and Escherichia coli heat-labile enterotoxin as carriers for the oral delivery of heterologous antigens and epitopes. Vaccine. 1993;11(2):235-240.  https://doi.org/10.1016/0264-410x(93)90023-q
  46. Boyaka P.N., Tafaro A., Fischer R., Leppla S.H., Fujihashi K., McGhee J.R. Effective mucosal immunity to anthrax: neutralizing antibodies and Th cell responses following nasal immunization with protective antigen. The Journal of Immunology. 2003;170(11):5636-5643. https://doi.org/10.4049/jimmunol.170.11.5636
  47. Kuan R.K., Janssen R., Heyward W., Bennett S., Nordyke R. Cost-effectiveness of hepatitis B vaccination using HEPLISAV™ in selected adult populations compared to Engerix-B® vaccine. Vaccine. 2013;31(37):4024-4032. https://doi.org/10.1016/j.vaccine.2013.05.014
  48. Wang S., Han Q., Zhang G., Zhang N., Li Z., Chen J. ett al. CpG oligodeoxynucleotide-adjuvanted fusion peptide derived from HBcAg epitope and HIV-Tat may elicit favorable immune response in PBMCs from patients with chronic HBV infection in the immunotolerant phase. International immunopharmacology. 2011;11(4):406-411.  https://doi.org/10.1016/j.intimp.2010.12.005
  49. Hopkins R.J., Daczkowski N.F., Kaptur P.E., Muse D., Sheldon E., LaForce C. et al. Randomized, double-blind, placebo-controlled, safety and immunogenicity study of 4 formulations of Anthrax Vaccine Adsorbed plus CPG 7909 (AV7909) in healthy adult volunteers. Vaccine. 2013;31(30):3051-3058. https://doi.org/10.1016/j.vaccine.2013.04.063
  50. Duncan C.J., Sheehy S.H., Ewer K.J., Douglas A.D., Collins K.A., Halstead F.D. et al. Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel+CPG 7909. PloS one. 2011;6(7):e22271. https://doi.org/10.1371/journal.pone.0022271
  51. Fang Y., Rowe T., Leon A.J., Banner D., Danesh A., Xu L.et al. Molecular Characterization of In Vivo Adjuvant Activity in Ferrets Vaccinated against Influenza Virus. Journal of virology. 2010;84(17):8369-8388. https://doi.org/10.1128/jvi.02305-09
  52. Yi A.-K., Hornbeck P., Lafrenz D.E., Krieg A.M. CpG DNA rescue of murine B lymphoma cells from anti-IgM-induced growth arrest and programmed cell death is associated with increased expression of c-myc and bcl-xL. The Journal of Immunology. 1996;157(11):4918-4925.
  53. Gilkeson G.S., Conover J., Halpern M., Pisetsky D.S., Feagin A., Klinman D.M. Effects of bacterial DNA on cytokine production by (NZB/NZW)F1 mice. The Journal of Immunology. 1998;161(8):3890-3895.
  54. Segal B.M., Chang J.T., Shevach E.M. CpG oligonucleotides are potent adjuvants for the activation of autoreactive encephalitogenic T cells in vivo. The Journal of Immunology. 2000;164(11):5683-5688. https://doi.org/10.4049/jimmunol.164.11.5683
  55. Bachmaier K., Neu N., La Maza L.M. de, Pal S., Hessel A., Penninger J.M. Chlamydia infections and heart disease linked through antigenic mimicry. Science. 1999;283(5406):1335-1339. https://doi.org/10.1126/science.283.5406.1335
  56. Zeuner R.A., Verthelyi D., Gursel M., Ishii K.J., Klinman D.M. Influence of stimulatory and suppressive DNA motifs on host susceptibility to inflammatory arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2003;48(6):1701-1707. https://doi.org/10.1002/art.11035
  57. DeFrancesco L. Dynavax trial halted. Nature Biotechnology. 2008;26(5):484-485.  https://doi.org/10.1038/nbt0508-484a
  58. Le Hello C., Cohen P., Bousser M., Letellier P., Guillevin L. Suspected hepatitis B vaccination related vasculitis. The Journal of Rheumatology. 1999;26(1):191-194. 
  59. Opal S.M. Endotoxins and other sepsis triggers. Contributions to nephrology. 2010;167:14-24.  https://doi.org/10.1159/000315915
  60. Cowdery J.S., Chace J.H., Yi A.-K., Krieg A.M. Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. The Journal of Immunology. 1996;156(12):4570-4575.
  61. Krieg A.M., Efler S.M., Wittpoth M., Al Adhami M.J., Davis H.L. Induction of Systemic TH1-Like Innate Immunity in Normal Volunteers Following Subcutaneous but Not Intravenous Administration of CPG 7909, a Synthetic B-Class CpG Oligodeoxynucleotide TLR9 Agonist. Journal of Immunotherapy. 2004;27(6):460-471.  https://doi.org/10.1097/00002371-200411000-00006
  62. Søgaard O.S., Lohse N., Harboe Z.B., Offersen R., Bukh A.R., Davis H.L et al. Improving the immunogenicity of pneumococcal conjugate vaccine in HIV-infected adults with a toll-like receptor 9 agonist adjuvant: a randomized, controlled trial. Clinical infectious diseases. 2010;51(1):42-50.  https://doi.org/10.1086/653112
  63. Sen G., Khan A.Q., Chen Q., Snapper C.M. In vivo humoral immune responses to isolated pneumococcal polysaccharides are dependent on the presence of associated TLR ligands. The Journal of Immunology. 2005;175(5):3084-3091. https://doi.org/10.4049/jimmunol.175.5.3084

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.