The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Vorobyov A.A.

Volgograd State Medical University;
Federal Center for Supporting the Development and Production of Exoprostheses of Volgograd State Medical University

Glukhova M.V.

Volgograd State Medical University

Bezborodov S.A.

Volgograd State Medical University

Ketov D.Yu.

Volgograd State Medical University

Avdeyuk D.N.

Volgograd State Medical University

The exoskeleton of the hand in modern habilitation and rehabilitation (analytical review)

Authors:

Vorobyov A.A., Glukhova M.V., Bezborodov S.A., Ketov D.Yu., Avdeyuk D.N.

More about the authors

Read: 305 times


To cite this article:

Vorobyov AA, Glukhova MV, Bezborodov SA, Ketov DYu, Avdeyuk DN. The exoskeleton of the hand in modern habilitation and rehabilitation (analytical review). Russian Journal of Operative Surgery and Clinical Anatomy. 2025;9(3):53‑61. (In Russ.)
https://doi.org/10.17116/operhirurg2025903153

Recommended articles:
Dyna­mics of motor and functional diso­rders in the early reco­very period after ischemic stroke. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(5):13-22
Impact of various reha­bilitation programs on anxiety and depression after surgery of early-stage cervical cancer. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(5):40-44
Effi­ciency of complex medi­cal reha­bilitation after pulmonary enda­rterectomy. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(6):629-636

References:

  1. Vorobyov AA, Petrukhin AV, Zasypkina OA, Krivonozhkina PS, Pozdnyakov AM. Exoskeleton as a new tool in habilitation and rehabilitation of the disabled (review). Modern technologies in medicine. 2015;7(2):185-197. (In Russ.). https://doi.org/10.17691/stm2015.7.2.22
  2. Vorobyov AA, Zasypkina OA, Krivonozhkina PS, Petrukhin AV, Pozdnyakov AM. Exoskeleton — the state of the problem and prospects for implementation in the system of habilitation and rehabilitation of the disabled (analytical review). Bulletin of VolGMU. 2015;2(54) :9-18. (In Russ.). https://cyberleninka.ru/article/n/ekzoskelet-sostoyanie-problemy-i-perspektivy-vnedreniya-v-sistemu-abilitatsii-i-reabilitatsii-invalidov-analiticheskiy-obzor
  3. Plessis T, Djouani K, Oosthuizen C. A Review of Active Hand Exoskeletons for Rehabilitation and Assistance. Robotics. 2021;10(1):40.  https://doi.org/10.3390/robotics10010040
  4. Halim I. Critical factors influencing user experience on passive exoskeleton application: a review. Int J Integrat Engineer. 2022;14(4):89-115.  https://doi.org/10.30880/ijie.2022.14.04.009
  5. Romanov AI, Stupin VA, Silina EV. Prospects and importance of external control devices (exoskeletons) for effective rehabilitation of patients with impaired motor function. Healthcare of the Russian Federation. 2021;65(3):287-294. (In Russ.). https://doi.org/10.47470/0044-197X-2021-65-3-287-294
  6. Zemlyakov IYu, Zhdanov DS, Bureev ASh, Golobokova EV, Kosteley YaV. Robotic means of rehabilitation of motor activity of patients in the post-stroke period. Medicine of extreme situations. 2023;4:48-55. (In Russ.). https://cyberleninka.ru/article/n/robototehnicheskie-sredstva-reabilitatsii-dvigatelnoy-aktivnosti-patsientov-v-postinsultnom-periode
  7. Zhdanov DS, Makarov RE. Development of a cable system of a wrist exoskeleton to restore lost limb function. Youth and modern information technologies: proceedings XX. 2023. (In Russ.).
  8. Bizhanov D, Zhetenbaev N, Shingisov B, Nusibalieva A, Seisenova D. Review and analysis of upper limb exoskeletons for rehabilitation. Bulletin of KazATK. 2023;124(1):315-323. (In Russ.). https://doi.org/10.52167/1609-1817-2023-124-1-315-323
  9. Tian Y, Wang H, Niu B, Zhang Y, Du J, Niu J, Sun L. Mechanical Design and Analysis of the End-Effector Finger Rehabilitation Robot (EFRR) for Stroke Patients. Machines. 2021;9(6):110.  https://doi.org/10.3390/machines9060110
  10. Vorobyov AA, Petrukhin AV, Zasypkina OA, Krivonozhkina PS. Clinical and anatomical substantiation of requirements for the development of upper limb exoskeletons. Orenburg Medical Bulletin. 2014;3(7):14-18. (In Russ.). https://cyberleninka.ru/article/n/kliniko-anatomicheskoe-obosnovanie-trebovaniy-k-razrabotke-ekzoskeletov-verhney-konechnosti
  11. Saldarriaga A, Gutierrez-Velasquez EI, Colorado HA. Soft Hand Exoskeletons for Rehabilitation: Approaches to Design, Manufacturing Methods, and Future Prospects. Robotics. 2024;13(3):50.  https://doi.org/10.3390/robotics13030050
  12. Kabir R, Sunny MSH, Ahmed HU, Rahman MH. Hand Rehabilitation Devices: A Comprehensive Systematic Review. Micromachines. 2022;13(7):1033. https://doi.org/10.3390/mi13071033
  13. Khatkova SE, Nikolaev EA, Pogoreltseva OA, Pavlova OG, Roshchin VYu, Kotlyarov VV. Important aspects of motor recovery of a patient with spastic paresis of the upper limb and proprioceptive disorders after focal CNS lesion (clinical observation). Permanent residence. Medical review. 2021;5(10):674-682. (In Russ.). https://doi.org/10.32364/2587-6821-2021-5-10-674-682
  14. Liu C, Lu J, Yang H, Guo K. Current State of Robotics in Hand Rehabilitation after Stroke: A Systematic Review. Applied Sciences. 2022; 12(9):4540. https://doi.org/10.3390/app12094540
  15. Turbina LG, Bobrov PD. Violation and restoration of movements of a paretic and preserved arm depending on the lateralization of the lesion and the severity of paresis: a biomechanical analysis. Human physiology. 2023;49:(1):64-78. (In Russ.). https://doi.org/10.31857/S013116462270014X
  16. Li F, Chen J, Zhou Z, Xie J, Gao Z, Xiao Y, Dai P, Xu C, Wang X, Zhou Y. Lightweight Soft Robotic Glove with Whole-Hand Finger Motion Tracking for Hand Rehabilitation in Virtual Reality. Biomimetics. 2023;8(5):425.  https://doi.org/10.3390/biomimetics8050425
  17. Hussain S, Ficuciello F. Advancements in soft wearable robots: A systematic review of actuation mechanisms and physical interfaces. IEEE Transactions on Medical Robotics and Bionics. 2024. https://doi.org/10.1109/TMRB.2024.3407374
  18. Vorobyov AA, Andryushchenko FA, Zasypkina OA, Solovyova IO, Krivonozhkina PS, Pozdnyakov AM. Terminology and classification of exoskeletons. Bulletin of VolGMU. 2015;3(55):71-77. (In Russ.). https://cyberleninka.ru/article/n/terminologiya-i-klassifikatsiya-ekzoskeletov
  19. Gherman B, Zima I, Vaida C, Tucan P, Pisla A, Birlescu I, Machado J, Pisla D. Robotic Systems for Hand Rehabilitation — Past, Present and Future. Technologies. 2025;13(1):37.  https://doi.org/10.3390/technologies13010037
  20. Arnoux B, Farr A, Boccara V, Vignais N. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task. Int J Environ Res Public Health. 2023;20(4):3153. https://doi.org/10.3390/ijerph20043153
  21. Huamanchahua D, Toledo-Garcia P, Aguirre J, Huacre S. Hand exoskeletons for rehabilitation: a systematic review. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). IEEE, 2022;1-6  https://doi.org/10.1109/IEMTRONICS55184.2022.9795786
  22. Li M, Xu G, Xie J, Chen C. A review: Motor rehabilitation after stroke with control based on human intent. Proc Inst Mech Eng H. 2018;232(4):344-360.  https://doi.org/10.1177/0954411918755828
  23. Sarac M, Solazzi M, Frisoli A. Design Requirements of Generic Hand Exoskeletons and Survey of Hand Exoskeletons for Rehabilitation, Assistive, or Haptic Use. IEEE Trans Haptics. 2019;12(4):400-413.  https://doi.org/10.1109/TOH.2019.2924881
  24. Tang D, Lv X, Zhang Y, Qi L, Shen C , Shen W. A review on soft exoskeletons for hand rehabilitation. Recent Patents on Engineering. 2024; 18(4):52-73.  https://doi.org/10.2174/1872212118666230525145443
  25. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems. 2015;73:135-143.  https://doi.org/10.1016/j.robot.2014.08.014
  26. Xia K, Chen X, Chang X, Liu C, Guo L, Xu X, Lv F, Wang Y, Sun H, Zhou J. Hand Exoskeleton Design and Human — Machine Interaction Strategies for Rehabilitation. Bioengineering. 2022;9(11):682.  https://doi.org/10.3390/bioengineering9110682
  27. Cooper RA, Smolinski G, Candiotti JL, et al. Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Actuators. 2024;13(7):236.  https://doi.org/10.3390/act13070236
  28. Kang BB, Choi H, Lee H, Cho KJ. Exo-Glove Poly II: A Polymer-Based Soft Wearable Robot for the Hand with a Tendon-Driven Actuation System. Soft Robot. 2019;6(2):214-227.  https://doi.org/10.1089/soro.2018.0006
  29. Guillén-Climent S, et al. A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting. Journal of neuroengineering and rehabilitation. 2021;18:1-16.  https://doi.org/10.1186/s12984-021-00837-z
  30. Koltsov AA, Dzhomardly EI. General issues of cerebral palsy in children (scientific review). Part 1: etiology, pathogenesis and clinical features of spastic forms. Physical and rehabilitation medicine. 2021;3:(1): 36-47. (In Russ.). https://doi.org/10.26211/2658-4522-2021-3-1-36-47
  31. Pitkin MR. Theory of the internal hydraulic exoskeleton and the Sanomechanics system in application to the prevention of osteoarthritis after unilateral amputation of the lower limb. Physical and rehabilitation medicine. 2021;3(1):8-17. (In Russ.). https://doi.org/10.26211/2658-4522-2021-3-1-8-18
  32. Rivera Robles J, Bory Reyes J, Hernández Simón LM, Palacios Hernández JIE. Rehabilitation Exoskeletons: a Systematic Literature Review. Revista Mexicana De Ingenieria Biomedica. 2024;45(2):78-99.  https://doi.org/10.17488/RMIB.45.2.5
  33. Saldarriaga A, Gutierrez-Velasquez EI, Colorado HA. Soft Hand Exoskeletons for Rehabilitation: Approaches to Design, Manufacturing Methods, and Future Prospects. Robotics. 2024;13(3):50.  https://doi.org/10.3390/robotics13030050
  34. Gonzalez-Vazquez A, Garcia L, Kilby J, McNair P. Soft wearable rehabilitation robots with artificial muscles based on smart materials: A review. Advanced Intelligent Systems. 2023;5(4):2200159. https://doi.org/10.1002/aisy.202200159
  35. de Mongeot LB, Galofaro E, Ramadan F, et al. Combining FES and Exoskeletons in a Hybrid Haptic System for Enhancing VR Experience. IEEE Trans Neural Syst Rehabil Eng. 2023;31:4812-4820. https://doi.org/10.1109/TNSRE.2023.3334190
  36. Du J, Tian Y, Zhang D, Wang H, Zhang Y, Cheng B, Niu J. Mechanism Design and Performance Analysis of a Wearable Hand Rehabilitation Robot. Machines. 2022;10(12):1211. https://doi.org/10.3390/machines10121211
  37. Curcio EM, Carbone G. Mechatronic design of a robot for upper limb rehabilitation at home. J Bionic Engineer. 2021;18(4):857-871.  https://doi.org/10.1007/s42235-021-0066-3
  38. Mathonsi T., Abozaid HM, Sikhakhane K, Berman T, Rimer S, Salifu M. An Overview of a Robotic Hand Rehabilitation System. 2024 International Conference on Electrical and Computer Engineering Researches (ICECER). IEEE, 2024;1-6.  https://doi.org/10.1109/ICECER62944.2024.10920306
  39. Patent No. 2780275 C1 Russian Federation, IPC A61H 3/00. Exoskeleton with variable rigidity: No. 2021108485: application 03/29/2021: published 09/21/2022. AL Snegirev, DA Shapovalov, AI Alimguzin, SA Pokotilo; applicant Federal State Autonomous Institution «Military Innovative Technopolis «ERA». (In Russ.).
  40. Noronha B, Accoto D. Exoskeletal devices for hand assistance and rehabilitation: A comprehensive analysis of state-of-the-art technologies. IEEE Transactions on Medical Robotics and Bionics. 2021;3(2):525-538.  https://doi.org/10.1109/TMRB.2021.3064412
  41. Tolstik AN, Deikalo VP. Technology of rehabilitation of patients with severe flexion deformities and recurrence of contractures of the fingers in Dupuytren’s disease. Surgery news. 2006;14(3):33-41. (In Russ.).
  42. Garcia GF, Gonçalves RS, Carbone G. A Review of Wrist Rehabilitation Robots and Highlights Needed for New Devices. Machines. 2024;12(5):315.  https://doi.org/10.3390/machines12050315
  43. Sheng B, Zhao J, Zhang Y, Xie S, Tao J. Commercial device-based hand rehabilitation systems for stroke patients: State of the art and future prospects. Heliyon. 2023;9(3):e13588. https://doi.org/10.1016/j.heliyon.2023.e13588
  44. Kabir R, Sunny MSH, Ahmed HU, Rahman MH. Hand Rehabilitation Devices: A Comprehensive Systematic Review. Micromachines. 2022;13(7):1033. https://doi.org/10.3390/mi13071033
  45. Dragusanu M, Iqbal MZ, Baldi TL, Prattichizzo D, Malvezzi M. Design, development, and control of a hand/wrist exoskeleton for rehabilitation and training. IEEE Transactions on Robotics. 2022;38(3):1472-1488. https://doi.org/10.1109/TRO.2022.3172510
  46. Louie DR, Mortenson WB, Durocher M, Teasell R, Yao J, Eng JJ. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation. BMC Neurol. 2020;20(1):35.  https://doi.org/10.1186/s12883-020-1617-7
  47. Patent No. 2727231 C1 Russian Federation, IPC A61H 1/00. Neurosurgeon’s exoskeleton: No. 2019145261: declared 25.12.2019: published 21.07.2020. AA Vorobyov, FA Andryushchenko. EDN XXIGKD. (In Russ.).
  48. Mashud G, Hasan S, Alam N. Advances in Control Techniques for Rehabilitation Exoskeleton Robots: A Systematic Review. Actuators. 2025;14(3):108.  https://doi.org/10.3390/act14030108
  49. Tiboni M, Borboni A, Vérité F, Bregoli C, Amici C. Sensors and Actuation Technologies in Exoskeletons: A Review. Sensors. 2022;22(3):884.  https://doi.org/10.3390/s22030884
  50. Lu J, Guo K, Yang H. Dynamic Analysis and Experimental Study of Lasso Transmission for Hand Rehabilitation Robot. Micromachines. 2023;14(4):858.  https://doi.org/10.3390/mi14040858

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.