The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Mishkin I.A.

National Medical Research Center for Therapy and Preventive Medicine;
Kireevsk Central District Hospital

Kontsevaya A.V.

National Medical Research Center for Therapy and Preventive Medicine

Gusev A.V.

Russian Research Institute of Health;
K-SkAI

Saharov A.A.

Renaissance Insurance Group

Drapkina O.M.

National Medical Research Center for Therapy and Preventive Medicine;
A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Comparison of the predictive values of traditional cardiovascular risk assessment methods using SCORE and FRAMINGHAM scales, machine learning technologies «INTEREPID»

Authors:

Mishkin I.A., Kontsevaya A.V., Gusev A.V., Saharov A.A., Drapkina O.M.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2024;27(2): 96‑102

Read: 1551 times


To cite this article:

Mishkin IA, Kontsevaya AV, Gusev AV, Saharov AA, Drapkina OM. Comparison of the predictive values of traditional cardiovascular risk assessment methods using SCORE and FRAMINGHAM scales, machine learning technologies «INTEREPID». Russian Journal of Preventive Medicine. 2024;27(2):96‑102. (In Russ.)
https://doi.org/10.17116/profmed20242702196

Recommended articles:
The significance of exogenous nitrate and nitrite of plant origin for vascular health. Russian Journal of Preventive Medi­cine. 2024;(11):141-146
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48

References:

  1. Kontsevaya AV, Drapkina OM, Balanova YuA, et al. Economic Burden of Cardiovascular Diseases in the Russian Federation in 2016. Ratsional’naya farmakoterapiya v kardiologii. 2018;14(2):156-166. (In Russ.). https://doi.org/10.20996/1819-6446-2018-14-2-156-166
  2. Drapkina OM, Kontsevaya AV, Kalinina AM, et al. Prevention of chronic non-communicable diseases in the Russian Federation. National Guide 2022. Kardiovaskulyarnaya terapiya i profilaktika. 2022;21(4):3235. (In Russ.). https://doi.org/10.15829/1728-8800-2022-3235
  3. Ukaz Prezidenta Rossijskoj Federatsii ot 07.05.2018 g. №204 «O natsional’nykh tselyakh i strategicheskikh zadachakh razvitiya Rossijskoj Federatsii na period do 2024 goda». (In Russ.). Accessed December 15, 2023. https://www.kremlin.ru/acts/bank/43027
  4. Organizatsiya provedeniya profilakticheskogo meditsinskogo osmotra i dispanserizatsii opredelennykh grupp vzroslogo naseleniya. Metodicheskie rekomendatsii po prakticheskoj realizatsii prikaza Minzdrava Rossii ot 13 marta 2019 g. №124n «Ob utverzhdenii poryadka provedeniya profilakticheskogo meditsinskogo osmotra i dispanserizatsii opredelennykh grupp vzroslogo naseleniya». M. 2019. (In Russ.).
  5. Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. European Heart Journal. 2003;24(11):987-1003. https://doi.org/10.1016/s0195-668x(03)00114-3
  6. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. European Heart Journal. 2021;42(25): 2439-2454. https://doi.org/10.1093/eurheartj/ehab309
  7. Belyalov FI. Prognozirovanie i shkaly v meditsine. 3-e izd., pererab. i dop. M.: MEDpress-inform; 2020. (In Russ.).
  8. Machin D, Cheung Y, Palmar M. Survival analysis: a practical approach. 2nd ed. New York; 2006.
  9. Sharashova EE, Kholmatova KK, Gorbatova MA, Grjibovski AM. Application of Cox regression in healthcare using the SPSS statistical software package. Nauka i zdravookhranenie. 2017;6:5-27. (In Russ.).
  10. Gusev AV, Gavrilov DV, Korsakov IN, et al. Prospects of using machine learning methods to predict cardiovascular diseases. Vrach i informatsionnye tekhnologii. 2019;(3):41-47. (In Russ.).
  11. Zhang Y, Guo SL, Han LN, Li TL. Application and Exploration of Big Data Mining in Clinical Medicine. Chinese Medical Journal. 2016;129(6):731-738.  https://doi.org/10.4103/0366-6999.178019
  12. Brink H. Real-world machine learning. Shelter Island, NY: Manning Publications Co.; 2017.
  13. Mishkin IA, Gusev AV, Kontsevaya AV, Drapkina O.M. mHealth apps as a tool for the prevention of cardiovascular diseases. Systematic review. Vrach i informatsionnye tekhnologii. 2022;4:12-27. (In Russ.). https://doi.org/10.25881/18110193_2022_4_12
  14. Mishkin IA, Koncevaya AV, Gusev AV, Drapkina OM. Prediction of cardiovascular events using proportional risk models and machine learning models: a systematic review. Sovremennye problemy zdravookhranenija i meditsinskoj statistiki. 2023;2:804-829. (In Russ.). https://doi.org/10.24412/2312-2935-2023-2-804-829
  15. Gusev AV, Gavrilov DV, Novitsky RE, et al. Improving the possibilities of assessing cardiovascular risk using machine learning methods. Rossijskij kardiologicheskij zhurnal. 2021;12:171-180. (In Russ.). https://doi.org/10.15829/1560-4071-2021-4618
  16. Wang Y, Zhu K, Li Y, et al. Comparison of Machine Learning Models and Framingham Risk Score for the prediction of the presence and severity of Coronary Artery Diseases by using Gensini Score. 2019. Accessed December 15, 2023. https://doi.org/10.21203/rs.2.12128/v1
  17. Sajeev S, Champion S, Beleigoli A, et al. Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning. International Journal of Environmental Research and Public Health. 2021;18(6):3187. https://doi.org/10.3390/ijerph18063187
  18. Orfanoudaki A, Chesley E, Cadisch C, et al. Machine learning provides evidence that stroke risk is not linear: The non-linear Framingham stroke risk score. PLoS One. 2020;15(5):e0232414. https://doi.org/10.1371/journal.pone.0232414
  19. Dimopoulos AC, Nikolaidou M, Caballero FF, et al. Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk. BMC Medical Research Methodology. 2018;18(1):179.  https://doi.org/10.1186/s12874-018-0644-1
  20. Gusev AV, Vladzimirsky AV, Sharova DE, et al. Development of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021. Digital Diagnostics. 2022; 3(3):178-194. (In Russ.). https://doi.org/10.17816/DD107367
  21. mHealth Apps Market Size Worth $149.3 Billion By 2028 | CAGR: 17.7%. Grand View Research, Inc. Accessed December 15, 2023. https://www.prnewswire.com/news-releases/mhealth-apps-market-size-worth-149-3-billion-by-2028--cagr-17-7-grand-view-research-inc-301233046.html

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.