The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Drapkina O.M.

National Medical Research Center for Therapy and Preventive Medicine;
A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Zhamalov L.M.

National Medical Research Center for Therapy and Preventive Medicine

Gut microbiota: a new risk factor for atherosclerosis?

Authors:

Drapkina O.M., Zhamalov L.M.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2022;25(11): 92‑97

Read: 6441 times


To cite this article:

Drapkina OM, Zhamalov LM. Gut microbiota: a new risk factor for atherosclerosis? Russian Journal of Preventive Medicine. 2022;25(11):92‑97. (In Russ.)
https://doi.org/10.17116/profmed20222511192

Recommended articles:
Features of como­rbidity pathology in young people. Russian Journal of Preventive Medi­cine. 2024;(11):63-69
The significance of exogenous nitrate and nitrite of plant origin for vascular health. Russian Journal of Preventive Medi­cine. 2024;(11):141-146
Risk factors asso­ciated with myopic macu­lopathy in acquired myopia. Russian Annals of Ophthalmology. 2024;(5):35-45
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Gut microbiota: role in human health and pote­ntial for personalized medi­cine. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):81-88
The gut microbiota in bipo­lar diso­rder. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):28-33

References:

  1. Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):139-596.  https://doi.org/10.1161/CIR.0000000000000757
  2. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice: Developed by the Task Force for Cardiovascular Disease Prevention in Clinical Practice With Representatives of the European Society of Cardiology and 12 Medical Societies With the Special Contribution of the European Association of Preventive Cardiology (EAPC). European Heart Journal. 2022;ehac458.
  3. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65.  https://doi.org/10.1038/nature08821
  4. Magne F, Gotteland M, Gauthier L, et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020; 12(5):1474. https://doi.org/10.3390/nu12051474
  5. Yao ME, Liao PD, Zhao XJ, et al. Trimethylamine-N-oxide has prognostic value in coronary heart disease: a meta-analysis and dose-response analysis. BMC Cardiovascular Disorders. 2020;20(1):7.  https://doi.org/10.1186/s12872-019-01310-5
  6. Shor A, Kuo CC, Patton DL. Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. South African Medical Journal. 1992;82(3):158-161. 
  7. Thomas M, Wong Y, Thomas D, et al. Relation between direct detection of Chlamydia pneumoniae DNA in human coronary arteries at postmortem examination and histological severity (Stary grading) of associated atherosclerotic plaque. Circulation. 1999;99(21):2733-2736. https://doi.org/10.1161/01.cir.99.21.2733
  8. Nadareishvili ZG, Koziol DE, Szekely B, et al. Increased CD8(+) T cells associated with Chlamydia pneumoniae in symptomatic carotid plaque. Stroke. 2001;32(9):1966-1972. https://doi.org/10.1161/hs0901.095633
  9. Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 2006;113(7):929-937.  https://doi.org/10.1161/CIRCULATIONAHA.105.579979
  10. Mitra S, Drautz-Moses DI, Alhede M, et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome. 2015;3:38.  https://doi.org/10.1186/s40168-015-0100-y
  11. Jia X, Xu W, Zhang L, et al. Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Frontiers in Cellular and Infection Microbiology. 2021;11:634780. https://doi.org/10.3389/fcimb.2021.634780
  12. Sanz Y, Moya-Pérez A. Microbiota, inflammation and obesity. Advances in Experimental Medicine and Biology. 2014;817:291-317.  https://doi.org/10.1007/978-1-4939-0897-4_14
  13. Kanneganti TD, Dixit VD. Immunological complications of obesity. Nature Immunology. 2012;13(8):707-712.  https://doi.org/10.1038/ni.2343
  14. D’Mello C, Ronaghan N, Zaheer R, et al. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain. Journal of Neuroscience. 2015; 35(30):10821-10830. https://doi.org/10.1523/JNEUROSCI.0575-15.2015
  15. Mulders RJ, de Git KCG, Schéle E, et al. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews. 2018;19(4):435-451.  https://doi.org/10.1111/obr.12661
  16. Mulders RJ, de Git KCG, Schéle E, et al. The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research. 2010;51(5): 1101-11012. https://doi.org/10.1194/jlr.M002774
  17. Rabot S, Membrez M, Bruneau A, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB Journal. 2010;24(12):4948-4959.
  18. Trøseid M, Andersen GØ, Broch K, et al. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020;52:102649. https://doi.org/10.1016/j.ebiom.2020.102649
  19. Wick G, Jakic B, Buszko M, et al. The role of heat shock proteins in atherosclerosis. Nature Reviews. Cardiology. 2014;11(9):516-529.  https://doi.org/10.1038/nrcardio.2014.91
  20. Janeiro MH, Ramírez MJ, Milagro FI, et al. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10(10):1398. https://doi.org/10.3390/nu10101398
  21. Tang WHW, Li XS, Wu Y, et al. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. American Heart Journal. 2021;236:80-86.  https://doi.org/10.1016/j.ahj.2021.01.020
  22. Lee Y, Nemet I, Wang Z, et al. Longitudinal Plasma Measures of Trimethylamine N-Oxide and Risk of Atherosclerotic Cardiovascular Disease Events in Community-Based Older Adults. Journal of the American Heart Association. 2021;10(17):e020646. https://doi.org/10.1161/JAHA.120.020646
  23. Al-Obaide MAI, Singh R, Datta P, et al. Gut Microbiota-Dependent Trimethylamine-N-oxide and Serum Biomarkers in Patients with T2DM and Advanced CKD. Journal of Clinical Medicine. 2017;6(9):86.  https://doi.org/10.3390/jcm6090086
  24. Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME Journal. 2013;7(4):880-884.  https://doi.org/10.1038/ismej.2012.153
  25. Ridker PM, Everett BM, Thuren T, et al; CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine. 2017;377(12):1119-1131. https://doi.org/10.1056/NEJMoa1707914
  26. Carnevale R, Nocella C, Petrozza V, et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Scientific Reports. 2018;8:3598. https://doi.org/10.1038/s41598-018-22076-4
  27. Ferrell JM, Boehme S, Li F, et al. Cholesterol 7α-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders. Journal of Lipid Research. 2016;57(7):1144-1154. https://doi.org/10.1194/jlr.M064709
  28. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews. 2009;89(1):147-191.  https://doi.org/10.1152/physrev.00010.2008
  29. Sawicka-Smiarowska E, Bondarczuk K, Bauer W, et al. Gut Microbiome in Chronic Coronary Syndrome Patients. Journal of Clinical Medicine. 2021; 10(21):5074. https://doi.org/10.3390/jcm10215074
  30. Chen J, Qin Q, Yan S, et al. Gut Microbiome Alterations in Patients with Carotid Atherosclerosis. Frontiers in Cardiovascular Medicine. 2021;8:739093. https://doi.org/10.3389/fcvm.2021.739093
  31. De Preter V, Coopmans T, Rutgeerts P, et al. Influence of long-term administration of lactulose and Saccharomyces boulardii on the colonic generation of phenolic compounds in healthy human subjects. Journal of the American College of Nutrition. 2006;25(6):541-549.  https://doi.org/10.1080/07315724.2006.10719570
  32. Yoshida N, Emoto T, Yamashita T, et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation. 2018;138(22):2486-2498. https://doi.org/10.1161/CIRCULATIONAHA.118.033714
  33. Yoshida N, Yamashita T, Kishino S, et al. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Scientific Reports. 2020;10:13009. https://doi.org/10.1038/s41598-020-69983-z
  34. Collado MC, Derrien M, Isolauri E, et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Applied and Environmental Microbiology. 2007;73(23):7767-7770. https://doi.org/10.1128/AEM.01477-07
  35. Li J, Lin S, Vanhoutte PM, et al. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe–/– Mice. Circulation. 2016;133(24):2434-2446. https://doi.org/10.1161/CIRCULATIONAHA.115.019645
  36. Jimenez-Torres J, Alcalá-Diaz JF, Torres-Peña JD, et al. Mediterranean Diet Reduces Atherosclerosis Progression in Coronary Heart Disease: An Analysis of the CORDIOPREV Randomized Controlled Trial. Stroke. 2021; 52(11):3440-3449. https://doi.org/10.1161/STROKEAHA.120.033214
  37. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812-1821. https://doi.org/10.1136/gutjnl-2015-309957
  38. Jiang T, Wu H, Yang X, et al. Lactobacillus Mucosae Strain Promoted by a High-Fiber Diet in Genetic Obese Child Alleviates Lipid Metabolism and Modifies Gut Microbiota in Apoe–/– Mice on a Western Diet. Microorganisms. 2020;8:1225. https://doi.org/10.3390/microorganisms8081225
  39. Parnell JA, Reimer RA. Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: a dose-response study in JCR:LA-cp rats. British Journal of Nutrition. 2010;103(11):1577-1584. https://doi.org/10.1017/S0007114509993539
  40. Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology. 2014;11(8):506-514.  https://doi.org/10.1038/nrgastro.2014.66
  41. Mo R, Zhang X, Yang Y. Effect of probiotics on lipid profiles in hypercholesterolaemic adults: A meta-analysis of randomized controlled trials. Medical Clinics. 2019;152(12):473-481.  https://doi.org/10.1016/j.medcli.2018.09.007
  42. Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men with Stable Coronary Artery Disease. Circulation Research. 2018;123(9):1091-1102. https://doi.org/10.1161/CIRCRESAHA.118.313565
  43. Bafeta A, Yavchitz A, Riveros C, et al. Methods and Reporting Studies Assessing Fecal Microbiota Transplantation: A Systematic Review. Annals of Internal Medicine. 2017;167(1):34-39.  https://doi.org/10.7326/M16-2810
  44. Liu H, Tian R, Wang H, et al. Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. Journal of Translational Medicine. 2020; 18(1):382.  https://doi.org/10.1186/s12967-020-02539-x
  45. Anderson CS, Huang Y, Lindley RI, et al. ENCHANTED Investigators and Coordinators. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet. 2019; 393(10174):877-888.  https://doi.org/10.1016/S0140-6736(19)30038-8

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.