The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Abramova M.Yu.

Belgorod State National Research University

Ponomarenko I.V.

Belgorod State National Research University

Orlova V.S.

Belgorod State National Research University

Batlutskaya I.V.

Belgorod State National Research University

Efremova O.A.

Belgorod State National Research University

Sorokina I.N.

Belgorod State National Research University

Churnosov M.I.

Belgorod State National Research University

Polymorphic locus rs805303 is associated with the risk of preeclampsia in pregnant women with fetal growth retardation

Authors:

Abramova M.Yu., Ponomarenko I.V., Orlova V.S., Batlutskaya I.V., Efremova O.A., Sorokina I.N., Churnosov M.I.

More about the authors

Journal: Russian Journal of Human Reproduction. 2023;29(3): 9‑15

Read: 1858 times


To cite this article:

Abramova MYu, Ponomarenko IV, Orlova VS, Batlutskaya IV, Efremova OA, Sorokina IN, Churnosov MI. Polymorphic locus rs805303 is associated with the risk of preeclampsia in pregnant women with fetal growth retardation. Russian Journal of Human Reproduction. 2023;29(3):9‑15. (In Russ.)
https://doi.org/10.17116/repro2023290319

Recommended articles:
Mole­cular mechanisms of preeclampsia. Russian Journal of Human Reproduction. 2025;(2):44-53
Impact of trophectoderm biopsy on the course of pregnancy and obstetric outcomes. Russian Journal of Human Reproduction. 2025;(3):63-69
On mole­cular gene­tic predictors of preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2024;(6):26-34
The level of hypo­xia-induced factor-1a and asso­ciated mole­cules in preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2025;(1):5-10
Study of the role of inte­rleukin-1β in blood serum in patients with acne. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(4):421-424

References:

  1. Molina LCG, Odibo L, Zientara S, Običan SG, Rodriguez A, Stout M, Odibo AO. Validation of Delphi procedure consensus criteria for defining fetal growth restriction. Ultrasound in Obstetrics and Gynecology. 2020;56(1):61-66.  https://doi.org/10.1002uog.20854
  2. Timohina EV, Strizhakov AN, Zafiridi NV, Fedjunina IA, Aslanov AG. Early fetal growth retardation: a new approach to the choice of management tactics. Akusherstvo i ginekologiya. 2021;9:42-49. (In Russ.). https://doi.org/10.18565aig.2021.9.42-49
  3. Colella M, Frerot A, Novais ARB, Baud O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Current Pediatric Reviews. 2018;14(4):212-218.  https://doi.org/10.21741573396314666180712114531
  4. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. Journal of Physiology. 2016;594(4):807-823.  https://doi.org/10.1113JP271402
  5. Zhelezova ME, Zephirova TP, Kanyukov SS. Fetal growth retardation: modern approaches to the diagnosis and management of pregnancy. Prakticheskaya medicina. 2019;17(4):8-14. (In Russ.). https://doi.org/10.320002072-1757-2019-4-8-14
  6. Fetal Growth Restriction: ACOG Practice Bulletin, Number 227. Obstetrics and Gynecology. 2021;137(2):16-28.  https://doi.org/10.1097AOG.0000000000004251
  7. Efremova OA. Studying the role of interlocus interactions of folate cycle genes and matrix metalloproteinases in the formation of fetal growth retardation. Research Results in Biomedicine. 2022;8(1):36-55. (In Russ.). https://doi.org/10.18413/2658-6533-2022-8-1-0-3
  8. Nardozza LM, Caetano AC, Zamarian AC, Mazzola JB, Silva CP, Marçal VM, Lobo TF, Peixoto AB, Araujo Júnior E. Fetal growth restriction: current knowledge. Archives of Gynecology and Obstetrics. 2017;295(5):1061-1077. https://doi.org/10.1007s00404-017-4341-9
  9. Marasciulo F, Orabona R, Fratelli N, Fichera A, Valcamonico A, Ferrari F, Odicino FE, Sartori E, Prefumo F. Preeclampsia and late fetal growth restriction. Minerva Obstetrics and Gynecology. 2021; 73(4):435-441.  https://doi.org/10.23736S2724-606X.21.04809-7
  10. Nedostatochnyj rost ploda, trebuyushchij predostavleniya medicinskoj pomoshchi materi (zaderzhka rosta ploda). Klinicheskie rekomendacii. 2022.
  11. Golovchenko O, Abramova M, Ponomarenko I. Churnosov M. Functionally significant polymorphisms of ESR1and PGR and risk of intrauterine growth restriction in population of central Russia. European Journal of Obstetrics and Gynecology and Reproductive Biology. 2020;253:52-57.  https://doi.org/10.1016j.ejogrb.2020.07.045
  12. Golovchenko OV. Molecular genetic determinants of pre-eclampsia. Research Results in Biomedicine. 2019;5(4):139-149. (In Russ.). https://doi.org/10.184132658-6533-2019-5-4-0-11
  13. Serebrova VN, Trifonova EA, Stepanov VA. Evolutionary-genetic analysis of the role of regulatory regions in CORO2A gene in the development of hereditary predisposition to preeclampsia in russian and yakut ethnic groups. Research Results in Biomedicine. 2018;4(3): 38-48. (In Russ.). https://doi.org/10.184132313-8955-2018-4-3-0-4
  14. Gipertenzivnye rasstrojstva vo vremya beremennosti, v rodah i poslerodovom periode. Preeklampsiya. Eklampsiya. Klinicheskie rekomendacii (protokol). M. 2016. (In Russ.).
  15. Reshetnikov E, Ponomarenko I, Golovchenko O, Sorokina I, Batlutskaya I, Yakunchenko T, Dvornyk V, Polonikov A, Churnosov M. The VNTR polymorphism of the endothelial nitric oxide synthase gene and blood pressure in women at the end of pregnancy. Taiwan Journal of Obstetrics and Gynecology. 2019;58(3):390-395.  https://doi.org/10.1016j.tjog.2018.11.035
  16. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics. 2007; 81(3):559-575.  https://doi.org/:10.1086519795
  17. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Research. 2016;44(D1): 877-881.  https://doi.org/10.1093nargkv1340
  18. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509): 1318-1330. https://doi.org/10.1126science.aaz1776
  19. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics. 2013;7:7.20.  https://doi.org/10.10020471142905.hg0720s76
  20. Ragimbeau R, El Kebriti L, Sebti S, Fourgous E, Boulahtouf A, Arena G, Espert L, Turtoi A, Gongora C, Houede N, Pattingre S. BAG6 promotes PINK1 signaling pathway and is essential for mitophagy. FASEB Journal. 2021;35(2):e21361. https://doi.org/10.1096/fj.202000930R
  21. Chu Y, Dong X, Kang Y, Liu J, Zhang T, Yang C, Wang Z, Shen W, Huo H, Zhuang M, Lu J, Liu Y. The Chaperone BAG6 Regulates Cellular Homeostasis between Autophagy and Apoptosis by Holding LC3B. iScience. 2020;23(11):101708. https://doi.org/10.1016/j.isci.2020.101708
  22. Krenciute G, Liu S, Yucer N, Shi Y, Ortiz P, Liu Q, Kim BJ, Odejimi AO, Leng M, Qin J, Wang Y. Nuclear BAG6-UBL4A-GET4 complex mediates DNA damage signaling and cell death. The Journal of Biological Chemistry. 2013;288(28):20547-20557. https://doi.org/10.1074/jbc.M112.443416
  23. Ponath V, Hoffmann N, Bergmann L, Mäder C, Alashkar Alhamwe B, Preußer C, Pogge von Strandmann E. Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles. International Journal of Molecular Sciences. 2021;22(4):2189. https://doi.org/10.3390/ijms22042189
  24. International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367): 103-109.  https://doi.org/10.1038nature10405
  25. Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, Grarup N, Sim X, Barnes DR, Witkowska K, Staley JR, Tragante V, Tukiainen T, Yaghootkar H, Masca N, Freitag DF, Ferreira T, Giannakopoulou O, Tinker A, Harakalova M, Mihailov E, Liu C, Kraja AT, Fallgaard Nielsen S, Rasheed A, Samuel M, Zhao W, Bonnycastle LL, Jackson AU, Narisu N, Swift AJ, Southam L, Marten J, Huyghe JR, Stančáková A, Fava C, Ohlsson T, Matchan A, Stirrups KE, Bork-Jensen J, Gjesing AP, Kontto J, Perola M, Shaw-Hawkins S, Havulinna AS, Zhang H, Donnelly LA, Groves CJ, Rayner NW, Neville MJ, Robertson NR, Yiorkas AM, Herzig KH, Kajantie E, Zhang W, Willems SM, Lannfelt L, Malerba G, Soranzo N, Trabetti E, Verweij N, Evangelou E, Moayyeri A, Vergnaud AC, Nelson CP, Poveda A, Varga TV, Caslake M, de Craen AJ, Trompet S, Luan J, Scott RA, Harris SE, Liewald DC, Marioni R, Menni C, Farmaki AE, Hallmans G, Renström F, Huffman JE, Hassinen M, Burgess S, Vasan RS, Felix JF; CHARGE-Heart Failure Consortium; Uria-Nickelsen M, Malarstig A, Reily DF, Hoek M, Vogt T, Lin H, Lieb W; EchoGen Consortium; Traylor M, Markus HF; METASTROKE Consortium; Highland HM, Justice AE, Marouli E; GIANT Consortium; Lindström J, Uusitupa M, Komulainen P, Lakka TA, Rauramaa R, Polasek O, Rudan I, Rolandsson O, Franks PW, Dedoussis G, Spector TD; EPIC-InterAct Consortium; Jousilahti P, Männistö S, Deary IJ, Starr JM, Langenberg C, Wareham NJ, Brown MJ, Dominiczak AF, Connell JM, Jukema JW, Sattar N, Ford I, Packard CJ, Esko T, Mägi R, Metspalu A, de Boer RA, van der Meer P, van der Harst P; Lifelines Cohort Study; Gambaro G, Ingelsson E, Lind L, de Bakker PI, Numans ME, Brandslund I, Christensen C, Petersen ER, Korpi-Hyövälti E, Oksa H, Chambers JC, Kooner JS, Blakemore AI, Franks S, Jarvelin MR, Husemoen LL, Linneberg A, Skaaby T, Thuesen B, Karpe F, Tuomilehto J, Doney AS, Morris AD, Palmer CN, Holmen OL, Hveem K, Willer CJ, Tuomi T, Groop L, Käräjämäki A, Palotie A, Ripatti S, Salomaa V, Alam DS, Shafi Majumder AA, Di Angelantonio E, Chowdhury R, McCarthy MI, Poulter N, Stanton AV, Sever P, Amouyel P, Arveiler D, Blankenberg S, Ferrières J, Kee F, Kuulasmaa K, Müller-Nurasyid M, Veronesi G, Virtamo J, Deloukas P; Wellcome Trust Case Control Consortium; Elliott P; Understanding Society Scientific Group; Zeggini E, Kathiresan S, Melander O, Kuusisto J, Laakso M, Padmanabhan S, Porteous D, Hayward C, Scotland G, Collins FS, Mohlke KL, Hansen T, Pedersen O, Boehnke M, Stringham HM; EPIC-CVD Consortium; Frossard P, Newton-Cheh C; CHARGE+ Exome Chip Blood Pressure Consortium; Tobin MD, Nordestgaard BG; T2D-GENES Consortium; GoT2DGenes Consortium; ExomeBP Consortium; CHD Exome+ Consortium; Caulfield MJ, Mahajan A, Morris AP, Tomaszewski M, Samani NJ, Saleheen D, Asselbergs FW, Lindgren CM, Danesh J, Wain LV, Butterworth AS, Howson JM, Munroe PB. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genet. 2016;48(10):1151-1161. https://doi.org/10.1038ng.3654

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.