The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Gmoshinski I.V.

Federal Research Centre of Nutrition, Biotechnology and food safety, Moscow, Russia

Apryatin S.A.

Federal Research Centre of Nutrition, Biotechnology and food safety, Moscow, Russia

Shipelin V.A.

Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia

Nikityuk D.B.

Federal state budgetary scientific institution «Federal Research Centre of Nutrition and Biotechnology», Moscow, Russia

Neuromediators and neuropeptides: the biomarkers for metabolic disturbances in obesity

Authors:

Gmoshinski I.V., Apryatin S.A., Shipelin V.A., Nikityuk D.B.

More about the authors

Journal: Problems of Endocrinology. 2018;64(4): 258‑269

Read: 10659 times


To cite this article:

Gmoshinski IV, Apryatin SA, Shipelin VA, Nikityuk DB. Neuromediators and neuropeptides: the biomarkers for metabolic disturbances in obesity. Problems of Endocrinology. 2018;64(4):258‑269. (In Russ.)
https://doi.org/10.14341/probl9466

Recommended articles:
Features of como­rbidity pathology in young people. Russian Journal of Preventive Medi­cine. 2024;(11):63-69
Modern view on the etiology of gallstone disease in children. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):59-68
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Inflammatory aging. Part 1. The principal biochemical mechanisms. Russian Journal of Preventive Medi­cine. 2024;(12):145-150
Application of modern methods for acti­vation of brain functions in obese patients (literature review). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6):54-61

References:

  1. Lapik IA, Gapparova KM, Chehonina JG, et al. Current trends in nutrigenomics of obesity. Problems of Nutrition. 2016;85(6):6-13. (In Russ.)
  2. Bojanowska E, Ciosek J. Can we selectively reduce appetite for energy-dense foods? An overview of pharmacological strategies for modification food preference behavior. Curr Neuropharmacol. 2016;14(2):118-142. doi:10.2174/1570159x14666151109103147
  3. Hsu TM, Hahn JD, Konanur VR, et al. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways. Elife. 2015;4. doi:10.7554/elife.11190
  4. Messina G, Valenzano A, Moscatelli F, et al. Role of autonomic nervous system and orexinergic system on adipose tissue. Front Physiol. 2017;8:137. doi:10.3389/fphys.2017.00137
  5. Londraville RL, Prokop JW, Duff RJ, et al. On the molecular evolution of leptin, leptin receptor, and endospanin. Front Endocrinol (Lausanne). 2017;8:58. doi:10.3389/fendo.2017.00058
  6. Messina G, Dalia C, Tafuri D, et al. Orexin-a controls sympathetic activity and eating behavior. Front Psychol. 2014;5:997. doi:10.3389/fpsyg.2014.00997
  7. Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Exp Diabetes Res. 2012;2012:824305. doi:10.1155/2012/824305d
  8. Burke LK, Heisler LK. 5-Hydroxytryptamine medications for the treatment of obesity. J Neuroendocrinol. 2015;27(6):389-398. doi:10.1111/jne.12287
  9. Herrera CP, Smith K, Atkinson F, et al. High-glycaemic index and -glycaemic load meals increase the availability of tryptophan in healthy volunteers. Br J Nutr. 2011;105(11):1601-1606. doi:10.1017/s0007114510005192
  10. Wu CH, Chang CS, Yang YK, et al. Comparison of brain serotonin transporter using [I-123]-ADAM between obese and non-obese young adults without an eating disorder. Plos One. 2017; 12(2):E0170886. doi:10.1371/journal.pone.0170886
  11. Shabbir F, Patel A, Mattison C, et al. Effect of diet on serotonergic neurotransmission in depression. Neurochem Int. 2013;62(3):324-329. doi:10.1016/j.neuint.2012.12.014
  12. Shabbir F, Patel A, Mattison C, et al. Effect of iet on serotonergic neurotransmission in depression. Neurochem Int. 2013;62(3):324-329. doi:10.1016/j.neuint.2012.12.014
  13. Vucetic Z, Carlin JL, Totoki K, Reyes TM. Epigenetic dysregulation of the dopamine system in diet-induced obesity. J Neurochem. 2012;120(6):891-898. doi:10.1111/j.1471-4159.2012.07649.x
  14. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15(1):37-46. doi:10.1016/j.tics.2010.11.001
  15. Rada P, Bocarsly ME, Barson JR, et al. Reduced accumbens dopamine in sprague-dawley rats prone to overeating a fat-rich diet. Physiol Behav. 2010;101(3):394-400. doi:10.1016/j.physbeh.2010.07.005
  16. Rada P, Avena NM, Hoebel BG. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience. 2005;134(3):737-744. doi:10.1016/j.neuroscience.2005.04.043
  17. Lee AK, Mojtahed-Jaberi M, Kyriakou T, et al. Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition. 2010;26(4):411-422. doi:10.1016/j.nut.2009.05.007
  18. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635-641. doi:10.1038/nn.2519
  19. Geiger BM, Haburcak M, Avena NM, et al. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159(4):1193-1199. doi:10.1016/j.neuroscience.2009.02.007
  20. Alsio J, Olszewski PK, Norback AH, et al. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience. 2010;171(3):779-787. doii: 10.1016/j.neuroscience.2010.09.046
  21. Naef L, Pitman KA, Borgland SL. Mesolimbic dopamine and its neuromodulators in obesity and binge eating. CNS Spectr. 2015;20(6):574-583. doi:10.1017/s1092852915000693
  22. Geloneze B, De Lima-Junior JC, Velloso LA. Glucagon-like peptide-1 receptor agonists (GLP-1ras) in the brain-adipocyte axis. Drugs. 2017;77(5):493-503. doi:10.1007/s40265-017-0706-4
  23. Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of circadian rhythmicity, stress and orexigenic neuropeptide systems: implications for food intake control. Front Neurosci. 2017;11:127. doi:10.3389/fnins.2017.00127
  24. Nakajima K, Cui Z, Li C, et al. Gs-Coupled GPCR signalling in AGRP neurons triggers sustained increase in food intake. Nat Commun. 2016;7:10268. doi:10.1038/ncomms10268
  25. Shevchenko YS, Mamontova TV, Baranova AF, et al. Changes in lifestyle factors affect the levels of neuropeptides, involved in the control of eating behavior, insulin resistance and level of chronic systemic inflammation in young overweight persons. Georgian Med News. 2015;(11):50-57. (In Russ.)
  26. Vahatalo LH, Ruohonen ST, Makela S, et al. Neuropeptide Y in the noradrenergic neurones induces obesity and inhibits sympathetic tone in mice. Acta Physiol (Oxf). 2015;213(4):902-919. doi:10.1111/apha.12436
  27. Kim YJ, Bi S. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats. Am J Physiol Regul Integr Comp Physiol. 2016;310(2):R134-142. doi:10.1152/ajpregu.00174.2015
  28. Vahatalo LH, Ruohonen ST, Ailanen L, Savontaus E. Neuropeptide Y in noradrenergic neurons induces obesity in transgenic mouse models. Neuropeptides. 2016;55:31-37. doi:10.1016/j.npep.2015.11.088
  29. Wei W, Pham K, Gammons JW, et al. Diet composition, not calorie intake, rapidly alters intrinsic excitability of hypothalamic AgRP/NPY neurons in mice. Sci Rep. 2015;5:16810. doi:10.1038/srep16810
  30. Cifani C, Micioni Di Bonaventura MV, Pucci M, et al. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? Front Neurosci. 2015;9:187. doi:10.3389/fnins.2015.00187
  31. Tang HN, Man XF, Liu YQ, et al. Dose-dependent effects of neuropeptide Y on the regulation of preadipocyte proliferation and adipocyte lipid synthesis via the PPARgamma pathways. Endocr J. 2015;62(9):835-846. doi:10.1507/endocrj.EJ15-0133
  32. Cote I, Sakarya Y, Kirichenko N, et al. Activation of the central melanocortin system chronically reduces body mass without the necessity of long-term caloric restriction. Can J Physiol Pharmacol. 2017;95(2):206-214. doi:10.1139/cjpp-2016-0290
  33. Butler AA, Girardet C, Mavrikaki M, et al. A Life without hunger: the Ups (and Downs) to modulating Melanocortin-3 receptor signaling. Front Neurosci. 2017;11:128. doi:10.3389/fnins.2017.00128
  34. Girardet C, Mavrikaki MM, Stevens JR, et al. Melanocortin-3 receptors expressed in Nkx2.1(+ve) neurons are sufficient for controlling appetitive responses to hypocaloric conditioning. Sci Rep. 2017;7:44444. doi:10.1038/srep44444
  35. Koch M, Varela L, Kim JG, et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature. 2015;519(7541):45-50. doi:10.1038/nature14260
  36. Mendez IA, Ostlund SB, Maidment NT, Murphy NP. Involvement of endogenous enkephalins and beta-endorphin in feeding and diet-induced obesity. Neuropsychopharmacology. 2015;40(9):2103-2112. doi:10.1038/npp.2015.67
  37. Clemmensen C, Finan B, Fischer K, et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice. EMBO Mol Med. 2015;7(3):288-298. doi:10.15252/emmm.201404508
  38. Cui J, Ding Y, Chen S, et al. Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity. J Clin Invest. 2016;126(9):3192-3206. doi:10.1172/JCI85676
  39. Mountjoy KG. Pro-Opiomelanocortin (POMC) neurones, POMC-derived peptides, melanocortin receptors and obesity: how understanding of this system has changed over the last decade. J Neuroendocrinol. 2015;27(6):406-418. doi:10.1111/jne.12285
  40. Baklanov AV, Bazhan NM. Study relative expression of genes that control glucose metabolism in the liver in mice with development of melanocortin obesity. Russian journal of physiology. 2015;101(6):689-699 (In Russ.)
  41. Cyr NE, Steger JS, Toorie AM, et al. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide alpha-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology. 2015;156(3):961-974. doi:10.1210/en.2014-1970
  42. Ornellas F, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Combined parental obesity augments single-parent obesity effects on hypothalamus inflammation, leptin signaling (JAK/STAT), hyperphagia, and obesity in the adult mice offspring. Physiol Behav. 2016;153:47-55. doi:10.1016/j.physbeh.2015.10.019
  43. Jeong JK, Kim JG, Kim HR, et al. A role of central NELL2 in the regulation of feeding behavior in rats. Mol Cells. 2017;40(3):186-194. doi:10.14348/molcells.2017.2278
  44. Vehapoglu A, Turkmen S, Terzioglu S. Alpha-melanocyte-stimulating hormone and agouti-related protein: do they play a role in appetite regulation in childhood obesity? J Clin Res Pediatr Endocrinol. 2016;8(1):40-47. doi:10.4274/jcrpe.2136
  45. Messina G, Viggiano A, Tafuri D, et al. Role of orexin in obese patients in the intensive care unit. J Anesth Clin Res. 2014;5(3):395. doi:10.4172/2155-6148.1000395
  46. Morello G, Imperatore R, Palomba L, et al. Orexin-A represses satiety-inducing POMC neurons and contributes to obesity VIA stimulation of endocannabinoid signaling. Proc Natl Acad Sci U S A. 2016;113(17):4759-4764. doi:10.1073/pnas.152130411
  47. Nixon JP, Mavanji V, Butterick TA, et al. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev. 2015;20:63-73. doi:10.1016/j.arr.2014.11.001
  48. Nebigil CG. Prokineticin is a new linker between obesity and cardiovascular diseases. Front Cardiovasc Med. 2017;4:20. doi:10.3389/fcvm.2017.00020
  49. Gardiner JV, Bataveljic A, Patel NA, et al. Prokineticin 2 is a hypothalamic neuropeptide that potently inhibits food intake. Diabetes. 2010;59(2):397-406. doi:10.2337/db09-119
  50. Sarfati J, Guiochon-Mantel A, Rondard P, et al. A comparative phenotypic study of kallmann syndrome patients carrying monoallelic and biallelic mutations in the prokineticin 2 or prokineticin receptor 2 genes. J Clin Endocrinol Metab. 2010;95(2):659-669. doi:10.1210/jc.2009-0843
  51. Beale K, Gardiner JV, Bewick GA, et al. Peripheral administration of prokineticin 2 potently reduces food intake and body weight in mice via the brainstem. Br J Pharmacol. 2013;168(2):403-410. doi:10.1111/j.1476-5381.2012.02191.x
  52. Fang P, Yu M, Gu X, et al. Circulating galanin and galanin like peptide concentrations are correlated with increased triglyceride concentration in obese patients. Clin Chim Acta. 2016;461:126-129. doi:10.1016/j.cca.2016.07.019
  53. Yang JA, Yasrebi A, Snyder M, Roepke TA. The interaction of fasting, caloric restriction, and diet-induced obesity with 17beta-estradiol on the expression of KNDy neuropeptides and their receptors in the female mouse. Mol Cell Endocrinol. 2016;437:35-50. doi:10.1016/j.mce.2016.08.008
  54. Yan Y, Tian L, Xiang X, et al. Chronic gastric electrical stimulation leads to weight loss via modulating multiple tissue neuropeptide Y, orexin, alpha-melanocyte-stimulating hormone and oxytocin in obese rats. Scand J Gastroenterol. 2016;51(2):157-167. doi:10.3109/00365521.2015.1069391
  55. Sekar R, Wang L, Chow BK. Central control of feeding behavior by the secretin, PACAP, and glucagon family of peptides. Front Endocrinol (Lausanne). 2017;8:18. doi:10.3389/fendo.2017.00018
  56. Shibue K, Yamane S, Harada N, et al. Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion. Am J Physiol Endocrinol Metab. 2015;308(7):E583-591. doi:10.1152/ajpendo.00543.2014
  57. Vu JP, Larauche M, Flores M, et al. Regulation of appetite, body composition, and metabolic hormones by vasoactive intestinal polypeptide (VIP). J Mol Neurosci. 2015;56(2):377-387. doi:10.1007/s12031-015-0556-z
  58. Martinez VG, O’Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem. 2015;61(3):471-482. doi:10.1373/clinchem.2014.231753
  59. Li J, Song J, Zaytseva YY, et al. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature. 2016;533(7603):411-415. doi:10.1038/nature17662
  60. Sam AH, Sleeth ML, Thomas EL, et al. Circulating pancreatic polypeptide concentrations predict visceral and liver fat content. J Clin Endocrinol Metab. 2015;100(3):1048-1052. doi:10.1210/jc.2014-3450
  61. Cabral A, Lopez Soto EJ, Epelbaum J, Perello M. Is ghrelin synthesized in the central nervous system? Int J Mol Sci. 2017;18(3). doi:10.3390/ijms18030638
  62. Collden G, Tschop MH, Muller TD. Therapeutic potential of targeting the ghrelin pathway. Int J Mol Sci. 2017;18(4). doi:10.3390/ijms18040798
  63. Zigman JM, Jones JE, Lee CE, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494(3):528-548. doi:10.1002/cne.20823
  64. Kohno D, Sone H, Minokoshi Y, Yada T. Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem Biophys Res Commun. 2008;366(2):388-392. doi:10.1016/j.bbrc.2007.11.166
  65. Yang SY, Lin SL, Chen YM, et al. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats. Sci Rep. 2016;6:32787. doi:10.1038/srep32787
  66. Yasrebi A, Hsieh A, Mamounis KJ, et al. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17beta-estradiol. Mol Cell Endocrinol. 2016;422:42-56. doi:10.1016/j.mce.2015.11.007
  67. Deck CA, Honeycutt JL, Cheung E, et al. Assessing the functional role of leptin in energy homeostasis and the stress response in vertebrates. Front Endocrinol (Lausanne). 2017;8:63. doi:10.3389/fendo.2017.00063
  68. Schaab M, Kratzsch J. The soluble leptin receptor. Best Pract Res Clin Endocrinol Metab. 2015;29(5):661-670. doi:10.1016/j.beem.2015.08.002
  69. Pedroso JA, Silveira MA, Lima LB, et al. Changes in leptin signaling by SOCS3 modulate fasting-induced hyperphagia and weight regain in mice. Endocrinology. 2016;157(10):3901-3914. doi:10.1210/en.2016-1038
  70. Page-Wilson G, Meece K, White A, et al. Proopiomelanocortin, agouti-related protein, and leptin in human cerebrospinal fluid: correlations with body weight and adiposity. Am J Physiol Endocrinol Metab. 2015;309(5):E458-E465. doi:10.1152/ajpendo.00206.2015

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.