The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Reshetnikov A.V.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Abaeva O.P.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Berdutin V.A.

Volga District Medical Center of the Federal Medical-Biological Agency

Romanova I.E.

Privolzhsky Research Medical University

Romanov S.V.

Volga District Medical Center of the Federal Medical-Biological Agency

Kovalchuk A.V.

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Golikova N.S.

Moscow Medical Institute ‘REAVIZ’

Prisyazhnaya N.V.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Experience in developing a neural network dialogue system for responding to written requests of the population to a large federal health care institution

Authors:

Reshetnikov A.V., Abaeva O.P., Berdutin V.A., Romanova I.E., Romanov S.V., Kovalchuk A.V., Golikova N.S., Prisyazhnaya N.V.

More about the authors

Read: 559 times


To cite this article:

Reshetnikov AV, Abaeva OP, Berdutin VA, et al. . Experience in developing a neural network dialogue system for responding to written requests of the population to a large federal health care institution. Medical Technologies. Assessment and Choice. 2025;47(2):48‑57. (In Russ.)
https://doi.org/10.17116/medtech20254702148

Recommended articles:
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Problems and prospects of medi­cal care for obese patients. Russian Journal of Preventive Medi­cine. 2024;(11):21-26
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36
Physician and patients’ views on tele­medicine technologies. Russian Journal of Preventive Medi­cine. 2025;(1):37-43

References:

  1. Romanova TE, Abaeva OP, Prisyazhnaya NV, Romanov SV, Berdutin VA. Relationships of doctors and patients of the infection hospital during the 1st and 2nd waves of the COVID-19 pandemic. Terapevticheskii arkhiv. 2024;96(1):42-44. (In Russ.). https://doi.org/10.26442/00403660.2024.01.202562
  2. Lipatov KS, Zarechnova NV, Lipatov DK. Formation of a doctor-patient relationship model in the treatment of complications of a novel type of coronavirus infection COVID-19. Glavvrach. 2020;(11):44-50. (In Russ.). https://doi.org/10.33920/med-03-2011-03
  3. Sun B, Li K. Neural Dialogue Generation Methods in Open Domain: A Survey. Natural Language Processing Research. 2021;1(3-4):56-70.  https://doi.org/10.2991/nlpr.d.210223.001
  4. Reshetnikov A, Berdutin V, Zaporozhtsev A, Romanov S, Abaeva O, Prisyazhnaya N, et al. Predictive algorithm for the regional spread of coronavirus infection across the Russian Federation. BMC Medical Informatics and Decision Making. 2023;23(1):48.  https://doi.org/10.1186/s12911-023-02135-1
  5. Dai Y, Li H, Tang C, Li Y, Sun J, Zhu X. Learning Low-Resource End-To-End Goal-Oriented Dialog for Fast and Reliable System Deployment. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA; 2020: 609-618.  https://doi.org/10.18653/v1/2020.acl-main.57
  6. Berdutin VA. Robust management tools for a person-centered medical organization. Glavvrach. 2020;(5):17-34. (In Russ.). https://doi.org/10.33920/med-03-2005-03
  7. Fedonnikov AS, Andriyanova EA, Grishechkina NV, Norkin IA. Online communication possibilities in managing the rehabilitation process after joint arthroplasty. Zdravooxranenie Rossijskoj Federacii. 2022;66(1):34-40. (In Russ.). https://doi.org/10.47470/0044-197X-2022-66-1-34-40
  8. Romanov SV, Berdutin VA, Zaporozhtsev AV, Abaeva OP, Romanova TE. Sistemny`j podxod v medicinskix organizaciyax. Uchebno-metodicheskoe posobie. M.: FGBU GNCz FMBCz im. A.I. Burnazyana FMBA Rossii; 2021. (In Russ.).
  9. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pretraining of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota. Association for Computational Linguistics. 2019: 4171-4186. https://doi.org/10.18653/v1/N19-1423
  10. Kuratov Y, Arkhipov M. Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language. arXiv. 2019;1905.07213. https://doi.org/10.48550/arXiv.1905.07213
  11. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. arXiv. 2017;1706.03762. https://doi.org/10.48550/arXiv.1706.03762
  12. Smith DM, Gillett NP, Simpson I.R, Athanasiadis PJ, Baehr J, Bethke I, et al. Attribution of multi-annual to decadal changes in the climate system: The Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP). Frontiers in Climate. 2022;4:955414. https://doi.org/10.3389/fclim.2022.955414
  13. Li Z, Maimaiti M, Sheng J, Ke Z, Silamu W, Wang Q, et al. An Empirical Study on Deep Neural Network Models for Chinese Dialogue Generation. Symmetry. 2020;12(11):1756. https://doi.org/10.3390/sym12111756
  14. Lapan` M. Glubokoe obuchenie s podkrepleniem. AlphaGo i drugie texnologii. ID Piter; 2020. (In Russ.).
  15. Li X, Li P, Bi W, Liu X., Lam W. Relevance-Promoting Language Model for Short-Text Conversation. arXiv. 2019:1911.11489. https://doi.org/10.48550/arXiv.1911.11489
  16. Zhao L, Xu W, Gao S, Guo J. Utilizing graph neural networks to improving dialogue-based relation extraction. Neurocomputing. 2021;456:299-311.  https://doi.org/10.1016/j.neucom.2021.05.082
  17. Russkikh TN, Tinyakova VI, Kukharets DV. Semantic analysis of patient reviews to provide decision support in the healthcare market. Kreativnaya e`konomika. 2024;18(2):455-474. (In Russ.). https://doi.org/10.18334/ce.18.2.120366
  18. Prisyazhnaya NV, Sadykova MF, Golikova NS, Borisova PM. High-tech medical care in the practice of Russian healthcare. Medical Technologies. Assessment and Choice. 2024;46(3):70-81. (In Russ.). https://doi.org/10.17116/medtech20244603170
  19. Malov DA. Glubokoe obuchenie i analiz danny`x: prakticheskoe rukovodstvo. SPb: BXV-Peterburg; 2023. (In Russ.).
  20. Chernyakov MK. Sistemy` iskusstvennogo intellekta i mashinnoe obuchenie: monografiya. Novosibirsk: Izd-vo NGTU; 2024. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.