The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Gusev A.V.

«K-SkAI» LLC;
Central Research Institute of Organization and Informatization in Healthcare

Vladzymyrskyy A.V.

Scientific and Practical Clinical Center for Diagnosis and Telemedicine Technologies;
Sechenov First Moscow State Medical University (Sechenov University)

Gavrilenko G.G.

K-Sky LLC

Methodical approach and recommendations for scientific description of creation and validation of machine learning model

Authors:

Gusev A.V., Vladzymyrskyy A.V., Gavrilenko G.G.

More about the authors

Read: 3630 times


To cite this article:

Gusev AV, Vladzymyrskyy AV, Gavrilenko GG. Methodical approach and recommendations for scientific description of creation and validation of machine learning model. Medical Technologies. Assessment and Choice. 2022;44(3):12‑30. (In Russ.)
https://doi.org/10.17116/medtech20224403112

Recommended articles:
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36

References:

  1. Global Burden of Disease Health Financing Collaborator Network. Past, present, and future of global health financing: A review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995-2050. Lancet. 2019;393(10187):2233-2260. https://doi.org/10.1016/s0140-6736(19)30841-4
  2. Cause of death, by non-communicable diseases (% of total). World Bank Open Data. Accessed June 16, 2022. https://data.worldbank.org/indicator/SH.DTH.NCOM.ZS
  3. Topol E, ed. The Patient Will See You Now: The Future of Medicine Is in Your Hands. New York: Basic Books; 2016.
  4. Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. New York: Basic Books; 2019.
  5. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020;(369): m1328. https://doi.org/10.1136/bmj.m1328
  6. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence. 2021;3:199-217.  https://doi.org/10.1038/s42256-021-00307-0
  7. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nature Medicine. 2020;26(9):1364-1374. https://doi.org/10.1038/s41591-020-1034-x
  8. Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nature Medicine. 2020;26(9):1320-1324. https://doi.org/10.1038/s41591-020-1041-y
  9. Collins GS, Reitsma JB, Altman DG, Moons KG; TRIPOD Group. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. The TRIPOD Group. Circulation. 2015;131(2):211-219.  https://doi.org/10.1161/CIRCULATIONAHA.114.014508
  10. Li D, Zhang Q, Tan Y, Feng X, Yue Y, Bai Y, et al. Prediction of COVID-19 Severity Using Chest Computed Tomography and Laboratory Measurements: Evaluation Using a Machine Learning Approach. JMIR Medical Informatics. 2020; 8(11):e21604. https://doi.org/10.2196/21604
  11. Vaid A, Somani S, Russak AJ, De Freitas JK, Chaudhry FF, Paranjpe I, et al. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation. Journal of Medical Internet Research. 2020;22(11):e24018. https://doi.org/10.2196/24018
  12. Thakkar HK, Liao WW, Wu C-Y, Hsieh Y-W, Lee T-H. Predicting Clinically Significant Motor Function Improvement after Contemporary Task-Oriented Interventions Using Machine Learning Approaches. Journal of Neuroengineering and Rehabilitation. 2020; 17(1):131.  https://doi.org/10.1186/s12984-020-00758-3
  13. Kalafi EY, Nor NAM, Taib NA, Ganggayah MD, Town C, Dhillon SK. Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data. Folia Biologica. 2019;65:212-220. 
  14. Korevaar DA, Gopalakrishna G, Cohen JF, Bossuyt PM. Targeted test evaluation: a framework for designing diagnostic accuracy studies with clear study hypotheses. Diagnostic and Prognostic Research. 2019;3:22.  https://doi.org/10.1186/s41512-019-0069-2
  15. Morozov SP, Vladzimirskiy AV, Ledakova NV, Sokolina IA, Kulberg NS, Gombolevskiy VA. Evaluation of diagnostic accuracy of the system for pulmonary tuberculosis screening based on artificial neural networks. Tuberkulez i bolezni legkikh. 2018;96(8):42-49. (In Russ.). https://doi.org/10.21292/2075-1230-2018-96-8-42-49
  16. Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circulation Research. 2017;121(9):1092–1101. https://doi.org/10.1161/CIRCRESAHA.117.311312
  17. Okada Y, Kiguchi T, Irisawa T, Yamada T, Yoshiya K, Park C, et al. Development and Validation of a Clinical Score to Predict Neurological Outcomes in Patients with Out-of-Hospital Cardiac Arrest Treated with Extracorporeal Cardiopulmonary Resuscitation. JAMA Network Open. 2020;3(11):e2022920. https://doi.org/10.1001/jamanetworkopen.2020.22920
  18. Pavlov NA, Andreychenko AE, Vladzymyrskyy AV, Revazyan AA, Kirpichev YuS, Morozov SP. Reference medical datasets (MosMedData) for independent external evaluation of algorithms based on artificial intelligence in diagnostics. Digital Diagnostics. 2021;2(1):49-66. (In Russ.). https://doi.org/10.17816/DD60635
  19. Alaa AM, Bolton T, Di Angelantonio E, Rudd JHF, van der Schaar M. Cardiovascular Disease Risk Prediction Using Automated Machine Learning: A Prospective Study of 423,604 UK Biobank Participants. PLoS One. 2019;14(5):e0213653. https://doi.org/10.1371/journal.pone.0213653
  20. Nishi H, Oishi N, Ishii A, Ono I, Ogura T, Sunohara T, et al. Predicting Clinical Outcomes of Large Vessel Occlusion Before Mechanical Thrombectomy Using Machine Learning. Stroke. 2019; 50(9):2379-2388. https://doi.org/10.1161/STROKEAHA.119.025411
  21. Morozov SP, Vladzimirskiy AV, Gombolevskiy VA, Klyashtorny VG, Fedulova IA, Vlasenkov LA. Artificial intelligence in lung cancer screening: assessment of the diagnostic accuracy of the algorithm analyzing low-dose computed tomography. Tuberkulez i bolezni legkikh. 2020;98(8):24-31. (In Russ.). https://doi.org/10.21292/2075-1230-2020-98-8-24-31
  22. Morozov SP, Andreychenko AE, Pavlov NA, Vladzymyrskyy AV, Ledikhova NV, Gombolevskiy VA, et al. 2020. MosMedData: Chest CT Scans with COVID-19 Related Findings Dataset. arXiv preprint arXiv:2005.06465. https://doi.org/10.1101/2020.05.20.20100362
  23. Ko H, Chung H, Kang WS, Park C, Kim DW, Kim SE, et al. An Artificial Intelligence Model to Predict the Mortality of COVID-19 Patients at Hospital Admission Time Using Routine Blood Samples: Development and Validation of an Ensemble Model. Journal of Medical Internet Research. 2020;22(12): e25442. https://doi.org/10.2196/25442
  24. Cabitza F, Campagner A. The need to separate the wheat from the chaff in medical informatics: Introducing a comprehensive checklist for the (self)-assessment of medical AI studies. International Journal of Medical Informatics. 2021;153:104510. https://doi.org/10.1016/j.ijmedinf.2021.104510
  25. Rivera SC, Liu X, Chan A-W, Denniston AK, Calvert MJ; on behalf of the SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. BMJ. 2020;370:m3210. https://doi.org/10.1136/bmj.m3210
  26. Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK; on behalf of the SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ. 2020;370:m3164. https://doi.org/10.1136/bmj.m3164
  27. Kwong JCC, McLoughlin LC, Haider M, Goldenberg MG, Erdman L, Rickard M, et al. Standardized Reporting of Machine Learning Applications in Urology: The STREAM-URO Framework. European Urology Focus. 2021;7(4):672-682.  https://doi.org/10.1016/j.euf.2021.07.004
  28. Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, et al.; IADR e-oral health network and the ITU WHO focus group AI for Health. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. Journal of Dentistry. 2021;107:103610. https://doi.org/10.1016/j.jdent.2021.103610
  29. Sengupta PP, Shrestha S, Berthon B, Messas E, Donal E, Tison GH, et al. Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist: Reviewed by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovascular Imaging. 2020;13(9):2017-2035. https://doi.org/10.1016/j.jcmg.2020.07.015

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.