The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Garanin A.A.

Samara State Medical University, Samara

Rogova V.S.

Samara State Medical University, Samara

Tolkacheva E.O.

Samara State Medical University, Samara

Osadchaya P.V.

Samara State Medical University, Samara

Clinical aspects of using remote sensing photoplethysmography: a narrative review

Authors:

Garanin A.A., Rogova V.S., Tolkacheva E.O., Osadchaya P.V.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2024;27(8): 101‑106

Read: 921 times


To cite this article:

Garanin AA, Rogova VS, Tolkacheva EO, Osadchaya PV. Clinical aspects of using remote sensing photoplethysmography: a narrative review. Russian Journal of Preventive Medicine. 2024;27(8):101‑106. (In Russ.)
https://doi.org/10.17116/profmed202427081101

Recommended articles:
Physician and patients’ views on tele­medicine technologies. Russian Journal of Preventive Medi­cine. 2025;(1):37-43
Remote technologies in the mana­gement of patients with vestibular pathology. Russian Bulletin of Otorhinolaryngology. 2025;(3):53-59

References:

  1. Rong Y, Theofanopoulos PC, Trichopoulos GC, et al. A new principle of pulse detection based on terahertz wave plethysmography. Scientific Reports. 2022;12(1):6347. https://doi.org/10.1038/s41598-022-09801-w
  2. Volkov IYu, Sagaidachnyi AA, Fomin AV. Photoplethysmographic imaging of hemodynamics and two-dimensional oximetry. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Fizika. 2022;22(1):15-45. (In Russ.). https://doi.org/10.18500/1817-3020-2022-22-1-15-45
  3. Hertzman AB. The blood supply of various skin areas as estimated by the photoelectric plethysmograph. American Journal of Psychology. 1938;124(2): 328-340.  https://doi.org/10.1152/ajplegacy.1938.124.2.328
  4. Yan Y, Ma X, Yao L, et al. Noncontact measurement of heart rate using facial video illuminated under natural light and signal weighted analysis. Bio-Medical Materials and Engineering. 2015;26(1):903-909.  https://doi.org/10.3233/BME-151383
  5. Moreno J, Ramos-Castro J, Movellan J, et al. Facial Video-Based Photoplethysmography to Detect HRV at Rest. International Journal of Sports Medicine. 2015;36(6):474-480.  https://doi.org/10.1055/s-0034-1398530
  6. Bousefsaf F, Maaoui C, Pruski A. Peripheral vasomotor activity assessment using a continuous wavelet analysis on webcam photoplethysmographic signals. Bio-Medical Materials and Engineering. 2016;27(5):527-538.  https://doi.org/10.3233/BME-161606
  7. Sun Y, Hu S, Azorin-Peris V, Greenwald S, et al. Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise. Journal of Biomedical Optics. 2011;16(7):077010. https://doi.org/10.1117/1.3602852
  8. Poh MZ, Mcduff DJ, Picard RW. Non-Contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation. Optics Express. 2010;18(10):10762-10774. https://doi.org/10.1364/OE.18.010762
  9. Qiao D, He T, Hu B, Li Y. Non-contact physiological signal detection using continuous wave Doppler radar. Bio-Medical Materials and Engineering. 2014;24(1):993-1000. https://doi.org/10.3233/BME-130896
  10. Verkruysse W, Svaasand LO, Nelson JS. Remote plethysmographic imaging using ambient light. Optics Express. 2008;16(26):21434-21445. https://doi.org/10.1364/oe.16.021434
  11. Martini R, Bagno A. The wavelet analysis for the assessment of microvascular function with laser Doppler fluxmetry over the last 20 years. Looking for hidden information. Clinical Hemorheology and Microcirculation. 2018;70(2): 213-229.  https://doi.org/10.3233/CH-189903
  12. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement. 2007;28(3):R1-39.  https://doi.org/10.1088/0967-3334/28/3/R01
  13. Simonyan MA, Posnenkova OM, Kiselev AR. Capabilities of photoplethysmography as a method for screening of cardiovascular system pathology. Cardio-IT. 2020;7(1):1-5. (In Russ.). https://doi.org/10.15275/cardioit.2020.0102
  14. Fedorovich AA, Gorshkov AYu, Drapkina OM. Modern possibilities of non-invasive research and remote monitoring of capillary blood flow in human skin. Regionarnoe krovoobrashhenie i mikrocirkulyaciya. 2020;19(4):87-91. (In Russ.). https://doi.org/10.24884/1682-6655-2020-19-4-87-91
  15. Perez MV, Mahaffey KW, Hedlin H, et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. The New England Journal of Medicine. 2019;381(20):1909-1917. https://doi.org/10.1056/NEJMoa1901183
  16. Lamberigts M, Van Hoof L, Proesmans T, et al. Remote Heart Rhythm Monitoring by Photoplethysmography-Based Smartphone Technology After Cardiac Surgery: Prospective Observational Study. Journal of Medical Internet Research. 2021;9(4):e26519. https://doi.org/10.2196/26519
  17. Alafeef M. Smartphone-based photoplethysmographic imaging for heart rate monitoring. Journal of Medical Engineering Technology. 2017;41(5):387-395.  https://doi.org/10.1080/03091902.2017.1299233
  18. Semchuk IP, Muravskaya NP, Zlobin KD, et al. Evaluation of the effectiveness of algorithms for identifying areas of interest in a face image during video plethysmographic measurements of heart rate. Biotechnosphere. 2021; 1(66):16-22. (In Russ.). https://doi.org/10.25960/bts.2021.1.16
  19. Marcinkevics Z, Rubins U, Zaharans J, et al. Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths. Journal of Biomedical Optics. 2016;21(3):35005. https://doi.org/10.1117/1.JBO.21.3.035005
  20. Jonathan E, Leahy MJ. Cellular phone-based photoplethysmographic imaging. Journal of Biophotonics. 2011;4(5):293-296.  https://doi.org/10.1002/jbio.201000050
  21. Lyubashina OA, Mamontov OV, Volynsky MA, et al. Contactless Assessment of Cerebral Autoregulation by Photoplethysmographic Imaging at Green Illumination. Frontal`naya nevrologiya. 2019;13(13):1235. (In Russ.). https://doi.org/10.3389/fnins.2019.01235
  22. Kamshilin AA, Miridonov S, Teplov V, et al. Photoplethysmographic imaging of high spatial resolution. Biomedical Optics Express. 2011;2(4):996-1006. https://doi.org/10.1364/BOE.2.000996
  23. Johansson A. Neural network for photoplethysmographic respiratory rate monitoring. Medical & biological engineering & computing. 2003;41:242-248.  https://doi.org/10.1007/BF02348427
  24. Allado E, Poussel M, Renno J, et al. Remote Photoplethysmography Is an Accurate Method to Remotely Measure Respiratory Rate: A Hospital-Based Trial. Journal of Clinical Medicine. 2022;11(13):3647. https://doi.org/10.3390/jcm11133647
  25. Knight S, Lipoth J, Namvari M, et al. The Accuracy of Wearable Photoplethysmography Sensors for Telehealth Monitoring: A Scoping Review. Telemedicine Journal and e-Health. 2023;29(6):813-828.  https://doi.org/10.1089/tmj.2022.0182
  26. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement. 2007;28(3):R1-39.  https://doi.org/10.1088/0967-3334/28/3/R01
  27. Spigulis J. Optical noninvasive monitoring of skin blood pulsations. Applied Optics. 2005;44(10):1850-1857. https://doi.org/10.1364/ao.44.001850
  28. Lee H, Ko H, Chung H, et al. Real-time realizable mobile imaging photoplethysmography. Scientific Reports. 2022;12(1):7141. https://doi.org/10.1038/s41598-022-11265-x
  29. Heiden E, Jones T, Brogaard MA, Kapoor M, et al. Measurement of Vital Signs Using Lifelight Remote Photoplethysmography: Results of the VISION-D and VISION-V Observational Studies. Journal of Medical Internet Research. 2022;6(11):e36340. https://doi.org/10.2196/36340

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.