The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Artamonov A.A.

S.M. Kirov Military Medical Academy

Ivanov A.M.

S.M. Kirov Military Medical Academy

Scanning electron microscopy in hemotology

Authors:

Artamonov A.A., Ivanov A.M.

More about the authors

Journal: Laboratory Service. 2025;14(1): 38‑47

Read: 1018 times


To cite this article:

Artamonov AA, Ivanov AM. Scanning electron microscopy in hemotology. Laboratory Service. 2025;14(1):38‑47. (In Russ.)
https://doi.org/10.17116/labs20251401138

Recommended articles:
Cardiac myxoma: biological features, morphology, differential diagnosis. Russian Journal of Archive of Pathology. 2024;(6):74-81
Soli­tary fibrous tumor of the kidney. Russian Journal of Archive of Pathology. 2025;(3):77-81

References:

  1. Alummoottil S, van Rooy MJ, Bester J, Grobbelaar C, Phulukdaree A. Scanning Electron and Atomic Force Microscopic Analysis of Erythrocytes in a Cohort of Atopic Asthma Patients — A Pilot Study. Hemato. 2023;4(1):90-99.  https://doi.org/10.3390/hemato4010009
  2. Kondratov KA, Artamonov AA, Mikhailovskii VYu, et al. SARS-CoV-2 Impact on Red Blood Cell Morphology. Biomedicines. 2023;11(11):2902. https://doi.org/10.3390/biomedicines11112902
  3. Wilson CI, Hopkins PL, Cabello-Inchausti B, Melnick SJ, Robinson MJ. The Peripheral Blood Smear in Patients With Sickle Cell Trait: A Morphologic Observation. Laboratory Medicine. 2000;31(8):445-447.  https://doi.org/10.1309/GTAK-UB4N-HPN3-GTD1
  4. Körber C, Wölfler A, Neubauer M, Robier C. Red blood cell morphology in patients with β-thalassemia minor. LaboratoriumsMedizin. 2017;41(1):49-52.  https://doi.org/10.1515/labmed-2016-0052
  5. Şener LT, Aktan M, Albeniz G, Şener A, Üstek D, Albeniz I. Identification of red blood cell membrane defects in a patient with hereditary spherocytosis using next-generation sequencing technology and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Molecular Medicine Reports. 2019;19(5):3912-3922. https://doi.org/10.3892/mmr.2019.10036
  6. Zhang Y, Zhang W, Wang S, et al. Detection of human erythrocytes influenced by iron deficiency anemia and thalassemia using atomic force microscopy. Micron. 2012;43(12):1287-1292. https://doi.org/10.1016/j.micron.2011.10.018
  7. Zhao Y, Huang T, Wang X, Chen Q, Shen H, Xiong B. Measurement for the Area of Red Blood Cells From Microscopic Images Based on Image Processing Technology and Its Applications in Aplastic Anemia, Megaloblastic Anemia, and Myelodysplastic Syndrome. Front Med. 2021. T. 8. C. 796920. https://doi.org/10.3389/fmed.2021.796920
  8. Shaked NT, Satterwhite LL, Truskey GA, Wax AP, Telen MJ. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry. JBO. 2011;16(3):030506. https://doi.org/10.1117/1.3556717
  9. Karandeniya DMW, Holmes DW, Sauret E, Gu YT. A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells. Biomech Model Mechanobiol. 2022;21(3):899-917.  https://doi.org/10.1007/s10237-022-01567-4
  10. Chen C, Gu Y, Xiao Z, et al. Automatic whole blood cell analysis from blood smear using label-free multi-modal imaging with deep neural networks. Analytica Chimica Acta. 2022;1229:340401. https://doi.org/10.1016/j.aca.2022.340401
  11. Sadafi A, Bordukova M, Makhro A, Navab N, Bogdanova A, Marr C. RedTell: an AI tool for interpretable analysis of red blood cell morphology. Front Physiol. 2023;14:1058720. https://doi.org/10.3389/fphys.2023.1058720
  12. Bessis M. Red cell shapes. An illustrated classification and its rationale. Nouv Rev Fr Hematol. 1972;12(6):721-745. 
  13. Tomaselli MB, John KM, Lux SE. Elliptical Erythrocyte Membrane Skeletons and Heat-Sensitive Spectrin in Hereditary Elliptocytosis. Proceedings of the National Academy of Sciences of the United States of America. 1981;78(3):1911-1915.
  14. Sheetz MP, Singer SJ. Biological Membranes as Bilayer Couples. A Molecular Mechanism of Drug-Erythrocyte Interactions. Proceedings of the National Academy of Sciences. 1974;71(11):4457-4461. https://doi.org/10.1073/pnas.71.11.4457
  15. Sheetz MP, Singer SJ. Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. Journal of Cell Biology. 1976;70(1):247-251.  https://doi.org/10.1083/jcb.70.1.247
  16. Goñi FM. The basic structure and dynamics of cell membranes: An update of the Singer–Nicolson model. Biochimica et Biophysica Acta (BBA) — Biomembranes. 2014;1838(6):1467-1476. https://doi.org/10.1016/j.bbamem.2014.01.006
  17. Polliack A. The contribution of scanning electron microscopy in haematology: its role in defining leucocyte and erythrocyte disorders. Journal of Microscopy. 1981;123(2):177-187.  https://doi.org/10.1111/j.1365-2818.1981.tb01293.x
  18. Laschi R, Pasquinelli G, Versura P. Scanning electron microscopy application in clinical research. Scanning Microsc. 1987;1(4):1771-1795.
  19. Fedorov A, Kondratov K, Kishenko V, et al. Application of high-sensitivity flow cytometry in combination with low-voltage scanning electron microscopy for characterization of nanosized objects during platelet concentrate storage. Platelets. 2020;31(2):226-235.  https://doi.org/10.1080/09537104.2019.1599337
  20. Gyawali P, Richards RS, Bwititi PT, Nwose EU. Association of abnormal erythrocyte morphology with oxidative stress and inflammation in metabolic syndrome. Blood Cells, Molecules, and Diseases. 2015;54(4):360-363.  https://doi.org/10.1016/j.bcmd.2015.01.005
  21. Swanepoel AC, Pretorius E. Scanning electron microscopy analysis of erythrocytes in thromboembolic ischemic stroke. Int J Lab Hematol. 2012;34(2):185-191.  https://doi.org/10.1111/j.1751-553X.2011.01379.x
  22. Ponomareva D.A., Nagayeva T.A., Balasheva I.I., Shevtsova N.M. Morphological characteristics of erythrocites at undifferentiated connective tissue dysplasia in children. Pediatric pharmacology. 2014;11(1):63-65  https://doi.org/10.15690/pf.v11i1.898
  23. Iglic A. A possible mechanism determining the stability of spiculated red blood cells. J Biomech. 1997;30(1):35-40.  https://doi.org/10.1016/s0021-9290(96)00100-5
  24. An L, Ji F, Yin Y, Liu Y, Zhou C. Modeling of Red Blood Cells in Capillary Flow Using Fluid-Structure Interaction and Gas Diffusion. Cells. 2022;11(24):3987. https://doi.org/10.3390/cells11243987
  25. Weber-Fishkin S, Eligulashvili A, Frame LD, Frame MD. Morphological Characteristics of Echinocytes: Novel Quantification of Spicule Geometry Using Scanning Electron Microscopy. Journal of Blood Disorders & Transfusion. 2022;13(8):1-13.  https://doi.org/10.4172/2155-9864.22.13.518
  26. Kozlova E, Sergunova V, Sherstyukova E, et al. Topological Relationships Cytoskeleton-Membrane Nanosurface-Morphology as a Basic Mechanism of Total Disorders of RBC Structures. International Journal of Molecular Sciences. 2022;23(4):2045. https://doi.org/10.3390/ijms23042045
  27. Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Duan Y. Deep Learning Models for Classification of Red Blood Cells in Microscopy Images to Aid in Sickle Cell Anemia Diagnosis. Electronics. 2020;9(3):427.  https://doi.org/10.3390/electronics9030427
  28. de Haan K, Ceylan Koydemir H, Rivenson Y, et al. Automated screening of sickle cells using a smartphone-based microscope and deep learning. npj Digit Med. 2020;3(1):1-9.  https://doi.org/10.1038/s41746-020-0282-y
  29. Bandaru SS, Killeen RB, Gupta V. Poikilocytosis. In: StatPearls. StatPearls Publishing; 2024. Accessed March 11, 2024.
  30. Olivieri NF. The beta-thalassemias. N Engl J Med. 1999;341(2): 99-109.  https://doi.org/10.1056/NEJM199907083410207
  31. Usuki K. Anemia: From Basic Knowledge to Up-to-Date Treatment. Topic: IV. Hemolytic anemia: Diagnosis and treatment. Nihon Naika Gakkai Zasshi. 2015;104(7):1389-1396. https://doi.org/10.2169/naika.104.1389
  32. Zini G, d’Onofrio G, Erber WN, et al. 2021 update of the 2012 ICSH Recommendations for identification, diagnostic value, and quantitation of schistocytes: Impact and revisions. Int J Lab Hematol. 2021;43(6):1264-1271. https://doi.org/10.1111/ijlh.13682
  33. Mallah HS, Brown MR, Rossi TM, Block RC. Parenteral fish oil-associated burr cell anemia. J Pediatr. 2010;156(2):324-326.e1.  https://doi.org/10.1016/j.jpeds.2009.07.062
  34. Hasler CR, Owen GR, Brunner W, Reinhart WH. Echinocytosis induced by haemodialysis. Nephrol Dial Transplant. 1998;13(12):3132-3137. https://doi.org/10.1093/ndt/13.12.3132
  35. Peikert K, Hermann A, Danek A. XK-Associated McLeod Syndrome: Nonhematological Manifestations and Relation to VPS13A Disease. Transfus Med Hemother. 2022;49(1):4-12.  https://doi.org/10.1159/000521417
  36. Cloos AS, Daenen LGM, Maja M, et al. Impaired Cytoskeletal and Membrane Biophysical Properties of Acanthocytes in Hypobetalipoproteinemia — A Case Study. Front Physiol. 2021;12:638027. https://doi.org/10.3389/fphys.2021.638027
  37. Robier C, Klescher D, Reicht G, Amouzadeh-Ghadikolai O, Quehenberger F, Neubauer M. Dacryocytes are a common morphologic feature of autoimmune and microangiopathic haemolytic anaemia. Clin Chem Lab Med. 2015;53(7):1073-1076. https://doi.org/10.1515/cclm-2014-0936
  38. Jiménez Gonzalo FJ, de Luis Navarro J, de Blas Orlando JM, Martín Noya A. Hereditary elliptocytosis associated with heterozygous beta-thalassemia with a hemolytic component. Sangre (Barc). 1999;44(5):391-392. 
  39. Kjelland JD, Dwyre DM, Jonas BA. Acquired Elliptocytosis as a Manifestation of Myelodysplastic Syndrome with Ring Sideroblasts and Multilineage Dysplasia. Case Rep Hematol. 2017;2017:3625946. https://doi.org/10.1155/2017/3625946
  40. Lee AC wai, Aung L, Yip YY, Hia CP ping. Hereditary stomatocytosis: an unusual cause of severe neonatal jaundice. Singapore Med J. 2018;59(9):505.  https://doi.org/10.11622/smedj.2018115
  41. Narla J, Mohandas N. Red cell membrane disorders. Int J Lab Hematol. 2017;39 Suppl 1:47-52.  https://doi.org/10.1111/ijlh.12657
  42. Kartashova NM, Tsogoev AS, Kidalov VN, Naumova EM. On the question concerning the physiological significance of changes of the form, ultrastructure and fluorescence of erythrocytes of peripheral blood during their transformation into stomatocytes. Vestnik Novykh Meditsinskikh Tekhnologii. 2005;12(1):8-11. (In Russ.). Published online 2005.
  43. Riazantseva NV, Novitskiĭ VV, Stepovaia EA, Tkachenko SB. Erythrocyte ultrastructure in norm and pathology: morphological phenomena and clinical correlations. Morfologiia. 2004;126(5):48-51. 
  44. Adewoyin A, Nwogoh B. Peripheral blood film — a review. Ann Ib Postgrad Med. 2014;12(2):71-79. 
  45. Andolfo I, Russo R, Gambale A, Iolascon A. New insights on hereditary erythrocyte membrane defects. Haematologica. 2016; 101(11):1284-1294. https://doi.org/10.3324/haematol.2016.142463
  46. Vasilev AP, Streltsova NN, Lystsova NL. Structural features of the lipid bilayer of the red blood cell membrane in people with isolated hypercholesterolemia without coronary artery disease and in patients with coronary artery disease. Terapevticheskii arkhiv. 2017;89(4):39-44.  https://doi.org/10.17116/terarkh201789439-44
  47. Ohnishi T, Asakura T. Denaturation of oxyhemoglobulin S by mechanical shaking. Biochim Biophys Acta. 1976;453(1):93-100.  https://doi.org/10.1016/0005-2795(76)90253-1
  48. Babanov SA, Azovskova TA, et al. Vibration disease: evolution of classification views, diagnosis, problems of examining. Vrach. 2023;34(4):11-17.  https://doi.org/10.29296/25877305-2023-04-02
  49. Herman TF, Killeen RB, Javaid MU. Heinz Body. In: StatPearls. StatPearls Publishing; 2024. Accessed March 11, 2024.
  50. Mishchenko AA, Zasukhina KV, Vityazeva SV. Resistance of human erythrocytes to the action of hydrochloric acid and sodium hypochlorite after oxidative stress in vitro. oxidative stress in vitro. Bulletin of Syktyvkar University Series 2 Biology Geology Chemistry Ecology. 2015;(5):68-75. 
  51. Moroz VV, Golubev AM, Afanasyev AV, Kuzovlev AN, Sergunova VA, Gudkova OE, Chernysh AM. The Structure and Function of a Red Blood Cell in Health and Critical Conditions. General Reanimatology. 2012;8(1):52. (In Russ.). https://doi.org/10.15360/1813-9779-2012-1-52
  52. Kaufman DP, Khattar J, Lappin SL. Physiology, Fetal Hemoglobin. In: StatPearls. StatPearls Publishing; 2024. Accessed March 11, 2024.
  53. Mandal AK, Mitra A, Das R. Sickle Cell Hemoglobin. Subcell Biochem. 2020;94:297-322.  https://doi.org/10.1007/978-3-030-41769-7_12
  54. Li H, Lykotrafitis G. Erythrocyte Membrane Model with Explicit Description of the Lipid Bilayer and the Spectrin Network. Biophys J. 2014;107(3):642-653.  https://doi.org/10.1016/j.bpj.2014.06.031
  55. Nacharaju P, Acharya AS. Amadori rearrangement potential of hemoglobin at its glycation sites is dependent on the three-dimensional structure of protein. Biochemistry. 1992;31(50):12673-12679. https://doi.org/10.1021/bi00165a018
  56. Koralkova P, van Solinge WW, van Wijk R. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia — pathophysiology, clinical aspects, and laboratory diagnosis. Int J Lab Hematol. 2014;36(3):388-397.  https://doi.org/10.1111/ijlh.12223
  57. Koury MJ, Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004;24:105-131.  https://doi.org/10.1146/annurev.nutr.24.012003.132306
  58. Zivot A, Lipton JM, Narla A, Blanc L. Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol Med. 2018;24:11.  https://doi.org/10.1186/s10020-018-0011-z
  59. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118(24):6258-6268. https://doi.org/10.1182/blood-2011-07-356006
  60. Broxmeyer HE. Erythropoietin: multiple targets, actions, and modifying influences for biological and clinical consideration. J Exp Med. 2013;210(2):205-208.  https://doi.org/10.1084/jem.20122760
  61. Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway and its Potential for Therapeutic Intervention in Malignancy and Ischemia. Yale J Biol Med. 2007;80(2):51-60. 
  62. Haase VH. Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol. 2010;299(1):F1-F13.  https://doi.org/10.1152/ajprenal.00174.2010
  63. Chaudhry HS, Kasarla MR. Microcytic Hypochromic Anemia. In: StatPearls. StatPearls Publishing; 2024. Accessed March 11, 2024. https://www.ncbi.nlm.nih.gov/books/NBK470252/
  64. Ahmed MH, Ghatge MS, Safo MK. Hemoglobin: Structure, Function and Allostery. Subcell Biochem. 2020;94:345-382.  https://doi.org/10.1007/978-3-030-41769-7_14
  65. Bloomer JR. Liver metabolism of porphyrins and haem. Journal of Gastroenterology and Hepatology. 1998;13(3):324-329.  https://doi.org/10.1111/j.1440-1746.1998.01548.x
  66. Kumari A. Chapter 8 — Heme Synthesis. In: Kumari A, ed. Sweet Biochemistry. Academic Press. 2018;33-36.  https://doi.org/10.1016/B978-0-12-814453-4.00008-X
  67. Schaefer RM, Schaefer L. Hypochromic red blood cells and reticulocytes. Kidney Int Suppl. 1999;69:S44-48.  https://doi.org/10.1046/j.1523-1755.1999.055suppl.69044.x
  68. Ford J. Red blood cell morphology. International Journal of Laboratory Hematology. 2013;35(3):351-357.  https://doi.org/10.1111/ijlh.12082
  69. Tabassum S, Khakwani M, Fayyaz A, Taj N. Role of Mentzer index for differentiating iron deficiency anemia and beta thalassemia trait in pregnant women. Pak J Med Sci. 2022;38(4Part-II):878-882.  https://doi.org/10.12669/pjms.38.4.4635
  70. Lanzkowsky P. Chapter 7 — Megaloblastic Anemia. In: Lanzkowsky P, Lipton JM, Fish JD, eds. Lanzkowsky’s Manual of Pediatric Hematology and Oncology (Sixth Edition). Academic Press. 2016;84-101.  https://doi.org/10.1016/B978-0-12-801368-7.00007-7
  71. Snow CF. Laboratory Diagnosis of Vitamin B12 and Folate Deficiency: A Guide for the Primary Care Physician. Archives of Internal Medicine. 1999;159(12):1289-1298. https://doi.org/10.1001/archinte.159.12.1289
  72. Schop A, Stouten K, Riedl JA, et al. The accuracy of mean corpuscular volume guided anaemia classification in primary care. Fam Pract. 2021;38(6):735-739.  https://doi.org/10.1093/fampra/cmab034
  73. Kim HS, Ko HH, Lee DH. The Measurement of Red Cell Size in Peripheral Blood Smear:Comparison of Mean Corpuscular Area and Mean Corpuscular Volume. Korean Journal of Clinical Pathology. Published online 2001;13-17. 
  74. Stabler SP. Clinical practice. Vitamin B12 deficiency. N Engl J Med. 2013;368(2):149-160.  https://doi.org/10.1056/NEJMcp1113996
  75. Kalfa TA. Hemolytic Anemias. In: McManus LM, Mitchell RN, eds. Pathobiology of Human Disease. Academic Press. 2014;1532-1543. https://doi.org/10.1016/B978-0-12-386456-7.07907-7
  76. Tebbi CK. Sickle Cell Disease, a Review. Hemato. 2022;3(2):341-366.  https://doi.org/10.3390/hemato3020024
  77. L’Acqua C, Hod E. New perspectives on the thrombotic complications of haemolysis. Br J Haematol. 2015;168(2):175-185.  https://doi.org/10.1111/bjh.13183
  78. Sanchez-Villalobos M, Blanquer M, Moraleda JM, Salido EJ, Perez-Oliva AB. New Insights Into Pathophysiology of β-Thalassemia. Front Med. 2022. T. 9. C. 880752. https://doi.org/10.3389/fmed.2022.880752
  79. Comité Nacional de Hematología, Donato H, Crisp RL, Rapetti MC, García E, Attie M. Hereditary spherocytosis: Review. Part I. History, demographics, pathogenesis, and diagnosis. Arch Argent Pediatr. 2015;113(1):69-80.  https://doi.org/10.5546/aap.2015.69
  80. Mariani M, Barcellini W, Vercellati C, et al. Clinical and hematologic features of 300 patients affected by hereditary spherocytosis grouped according to the type of the membrane protein defect. Haematologica. 2008;93(9):1310-1317. https://doi.org/10.3324/haematol.12546
  81. King MJ, Garçon L, Hoyer JD, et al. ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders. International Journal of Laboratory Hematology. 2015;37(3):304-325.  https://doi.org/10.1111/ijlh.12335
  82. Jha SK, Vaqar S. Hereditary Elliptocytosis. In: StatPearls. StatPearls Publishing. 2024. Accessed March 11, 2024.
  83. Wu Y, Liao L, Lin F. The diagnostic protocol for hereditary spherocytosis-2021 update. J Clin Lab Anal. 2021;35(12):e24034. https://doi.org/10.1002/jcla.24034
  84. Luzzatto L. Diagnosis and clinical management of enzymopathies. Hematology: the American Society of Hematology Education Program. 2021;2021(1):341.  https://doi.org/10.1182/hematology.2021000266
  85. Al-Samkari H, Van Beers EJ, Kuo KHM, et al. The variable manifestations of disease in pyruvate kinase deficiency and their management. Haematologica. 2020;105(9):2229-2239. https://doi.org/10.3324/haematol.2019.240846
  86. Diegues A, Simões P, Ceriz T, Lopes AR, Tomé E. Favism: A Case Report. Cureus. 2022 Mar 17;14(3):e23269. https://doi.org/10.7759/cureus.23269
  87. Feghaly J, Al Hout AR, Mercieca Balbi M. Aspirin safety in glucose-6-phosphate dehydrogenase deficiency patients with acute coronary syndrome undergoing percutaneous coronary intervention. BMJ Case Rep. 2017;2017:bcr2017220483. https://doi.org/10.1136/bcr-2017-220483
  88. Phillips J, Henderson AC. Hemolytic Anemia: Evaluation and Differential Diagnosis. Am Fam Physician. 2018;98(6):354-361. 
  89. Navaya KT, Prasad K, Singh BMK. Analysis of red blood cells from peripheral blood smear images for anemia detection: a methodological review. Med Biol Eng Comput. 2022;60(9):2445-2462. https://doi.org/10.1007/s11517-022-02614-z
  90. Barcellini W, Fattizzo B. Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia. Disease Markers. 2015;2015:e635670. https://doi.org/10.1155/2015/635670
  91. Jamwal M, Aggarwal A, Palodhi A, et al. Next-Generation Sequencing–Based Diagnosis of Unexplained Inherited Hemolytic Anemias Reveals Wide Genetic and Phenotypic Heterogeneity. The Journal of Molecular Diagnostics. 2020;22(4):579-590.  https://doi.org/10.1016/j.jmoldx.2020.01.007
  92. Medri C, Méndez A, Hammerer-Lercher A, Rovó A, Angelillo-Scherrer A. Unstable hemoglobin Montreal II uncovered in an adult with unexplained hemolysis exacerbated by a presumed viral infection: a case report. J Med Case Rep. 2022;16(1):145.  https://doi.org/10.1186/s13256-022-03374-y

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.